
TANDY

Reference
D

CUSTOM MANUFACTURED FOR RADIO SHACK, A DIVISION OF TANDY CORPORATION

16 Bit Hand-Held Operating System

Programmers Reference Guide

© 1986 Microsoft Corporation

Licensed to Tandy Corporation

All Rights Reserved.

BIOS and BIOS Specification

© 1986 OKI Electric Industry Company LTD.

Licensed to Tandy Corporation

All Rights Reserved.

All portions of this software are copyrighted and are the

proprietary and trade secret information of Tandy Corpora-

tion and/or its licensor. Use, reproduction or publication of

any portion of this material without the prior written authori-

zation by Tandy Corporation is strictly prohibited.

Tandy 600

Programmers Reference Guide

BIOS and BIOS Specification

© 1986 Tandy Corporation

All Rights Reserved

Reproduction or use, without the express written permission

from Tandy Corporation and/or its licensor, of any portion of

this manual is prohibited. While reasonable efforts have

been taken in the preparation of this manual to assure its

accuracy, Tandy Corporation assumes no liability resulting

from any errors or omissions in this manual, or from the use

of the information contained herein,

Tandy is a registered trademark of Tandy Corporation.

10987654321

TANDY 600
PROGRAMMERS REFERENCE
BIOS AND BIOS SPECIFICATION

GUIDE

Table of Contents

Page

Section 1 — Programmers Reference 1

Interrupt Vectors used by HH O/S 1

Descriptions of Interrupts 2

Error Codes 10

HH O/S Function Calls 11

HH O/S Database Function Calls 76

Applications Programs Under HH O/S 111

Device Drivers Under HH O/S 117

Section 2 — BIOS Specification 1 23

Appendices:
A - Summation of O/S Functions 1 85

B - Changing Main Menu Labels 191

C - Program Transfer and Conversion 1 95

D - MS-WORKS Utilities for Development 1 97

Section 1

PROGRAMMERS
REFERENCE

Interrupt Vectors Used by HH O/S

The following interrupts are used by HH O/S:

INT No. Function

40h Reserved

41 h Reserved

42h HH O/S Function Call

43h DBMS Function Call

44h Free AMI File Space

45h File System Moving

46h Get File Address

47h Translate Address

48h Reserved

49h Reserved

4Ah Reserved

4Bh Reserved

4Ch RS-232C Receiver Hook

4Dh Interval Timer Hook
4Eh Power Low/Off Hook

4Fh Keyboard Queue Hook

Descriptions of Interrupts

INT42h Function Cal

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

XXXXXXXX Entry; AH - Function Code
Other registers are function specific

Exit Function specific

IP:

FLG

CS

DS

SS

ES

See the section on Function Calls for descriptions of the available functions and their entry

and exit parameters.

INT 43h - DB Function Call

AX

BX

CX

DX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

Entry: AH - Function Code
DS:DX - Parameter Block

Exit AX - Return value or error code

See the section on DBMS Function Calls for descriptions of the available functions and their

entry and exit parameters.

3

INT 44h - Free AMI File Space

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: CX - Number paragraphs of memory
needed

Exit: AX - Number of paragraphs of memory
released

This hook is provided as a mechanism for the HH O/S to request that an application program

release memory space from its AMI. Whenever a memory request has occurred during the

execution of an O/S function call, and there is not sufficient free memory to satisfy the

request, HH O/S will invoke this interrupt with parameters specifying the amount of additional

memory required to satisfy the memory request. The application program may then free up

memory in its AMI file if possible, and return to HH O/S informing it of how much memory may
be recovered from the AMI file.

Some programs may run more efficiently if they can initially allocate a large block of memory
to their AMI, and then incrementally release it back to the system as required. This hook is

provided to support such applications. It is never necessary for an application program to use

this hook vector.

On entry, CX will specify the number of paragraphs of memory that the O/S requires to

complete the current memory request. The segment registers DS and ES will contain the

same value as on the original entry to the O/S function being executed. The stack registers

SS and SP will point to the stack that was in effect on entry to the O/S function.

If the application program is able to release any memory from its AMI file, it should do so. The

space freed will always be taken from the end of the file, so that any internal data structures

necessary should be moved down to place the free memory at the end of the file. The

application program should then return to the O/S by doing an IRET instruction and return in

AX the number of paragraphs of memory actually made available to the O/S to recover from

the end of the AMI file. If no memory was made available, AX must contain 0.

Any changes to DS, ES, SS, or SP within this hook routine will be remembered by the O/S

and those changed registers will be restored before returning to the application when the O/S

function call completes. If, for example, the application program's stack were at the end of the

AMI, the hook routine could copy the data on the stack down by the requested amount, adjust

SP to point to the new stack location, and then perform the IRET. HH O/S would then

remember the new location of the application program's stack, and that stack would be in

effect when the interrupted function call completes.

HH O/S will have pushed some critical information onto the application program's stack before

performing the INT 44h instruction. For this reason, the hook routine must preserve the

contents of the stack, although it is allowed to move its location.

HH O/S is not reentrant. For this reason, the INT 44h hook routine may not make any HH O/S

function calls. The INT 44h hook routine is allowed to perform any of the HH O/S interrupts

that are explicitly listed as being reentrant.

INT 45h - File System Moving Hook

AX

BX

cx

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

Entry: none

Exit: none

The internal file system under HH O/S is an in-memory system. Each file is contained in a

single block of memory up to 64k bytes in size, with the files stored contiguously in memory.

For this reason, when one file grows or shrinks, it causes other files in the system to be

moved to either make more room for a file that is expanding or to occupy the space left by a

file that is contracting.

Because of this dynamic nature of the file system, programs which refer to files through

absolute address pointers need to be kept aware of the movement of files in the system.

Whenever HH O/S moves a portion of the file system, it will invoke the File System Moving

hook. The user provided hook routine can then adjust any internal pointers necessary. Any

program which is concerned about the absolute address of an item in the file system can use

this hook to keep its file pointers current.

The sequence of operations will be as follows:

1. The affected portions of the file system will be moved.

2. The values which were in the program's segment registers at the time of the current

function call will be adjusted as appropriate for the file system movement taking place.

3. The segment portion of the vector address for the File System Moving interrupt will be

adjusted as appropriate for the movement taking place.

4. The File System Moving interrupt will be invoked. The application should adjust any pointers

necessary. The Translate Address interrupt can be used to aid in making these

adjustments. When the hook routine has completed any adjustments it needs to make, it

should perform an IRET to return to HH O/S.

5. HH O/S will complete whatever function call caused the file system to move, and then

return to the program as usual.

Because HH O/S adjusts the program's segment registers automatically, it will not be

necessary for a program to use this hook unless it refers to files using absolute file addresses

rather than the read/write function calls. Use of this hook requires careful programming, and

should generally be avoided.

NOTE: HH O/S is not reentrant. Hook routines should not perform any O/S or DBMS
function calls. The only O/S operations allowed within the hook routine are INT

46h, Get File Address, and INT 47h, Translate Address.

INT46h - Get File Address

AX

BX

CX

DX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

ss

ES

Entry: BX - File handle of opened file

Exit: AX - Status code or file segment
address

HH O/S is not reentrant. For this reason, device drivers and interrupt service routines can't call

HH 0/S functions. If a device driver, or an interrupt service routine needs to be able to find the

absolute address of a file it may do so using this interrupt.

If HH O/S is not able to supply the file address at the time of the call, the Invalid Access

Request error will be returned. In this case, the program should repeatedly call INT 46h until

this error no longer occurs.

If BX contains OFFFFh, the address of the AMI for the currently executing program is returned.

8

INT 47h - Translate Address

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: CX - Number of addresses to translate

DS:DX - Pointer to block of addresses to

translate

Exit none

XXXXXXXXXXXXXXXXXXX

User hook routines which use the File System Moving hook (INT 45h), may use this interrupt

to adjust file segment pointers. The contents of DS:DX point to a block of words containing

segment addresses which may need adjustment, and CX specifies the number of values in

the block. This function will adjust these segment addresses to the corresponding new

segment address based upon the current motion of the file system. This function will only

return meaningful values when called from within a hook routine which was invoked through

INT 45h.

Error Codes

In general, HH O/S indicates the success or failure of an operation by returning a status code

in AX. On return from the function call, the carry flag will be clear if no error occurred and the

operation succeeded. If the carry flag is set, then the operation failed, and the status code in

AX gives the reason for the failure. The list below gives the general meaning of each of the

defined status codes. If any other error code is received, it should be treated as a general

error indication.

The following error codes are returned by HH O/S functions calls:

1 Un-implemented function

2 File not found

4 Too many open files

5 File access denied

6 Invalid file handle

8 Out of memory
9 Invalid memory block

11 Bad file format

12 Invalid access request

18 No more files

20 File too big

21 Internal file system error

22 Bad file name
23 Exec failure

24 General I/O error

25 Bad application header

26 File checksum error

27 Device not found

28 Invalid time

29 Invalid date

In addition to those listed above, the following error codes can be returned by the data base

functions:

40h Record already opened
41 h No opened record

42h Record not found

43h Field not found

44h Too many fields

45h No fields defined

46h Uninitialized data

47h Bad field data size

48h Field already exists

49h Bad sort key specified

4Ah Query buffer overflow error

4Bh Bad field type specified

4Ch Too many records

4Dh Record too big

4Eh Invalid Query buffer

10

HH 0/S Function Calls

The following is a list, in numeric order, of all function calls supported by HH 0/S. The function

code numbers are given in hexadecimal. Function calls 00 - 57 are similar to the same

numbered functions in MS-DOS. Although similar in nature, these functions are not necessarily

identical to the MS-DOS functions. Function calls numbered higher than 57 are not equivalent

to any MS-DOS functions and perform operations unique to the HH O/S environment.

Page

01 - Read Keyboard with Echo 13

02 - Display Character on Console 14

08 - Read Keyboard without Echo 15

09 - Display Character String 16

0B - Check Keyboard Status 17

0C - Flush Keyboard Buffer and Read Keyboard 18

25 - Set Interrupt Vector 19

29 - Parse File Name 20

2A - Get Date 21

2B - Set Date 22

2C - Get Time 23

2D - Set Time • 24

2E - Set Disk Verify After Write Flag 25

35 - Get Interrupt Vector 26

36 - Get Disk Free Space 27

3C - Create File 28

3D - Open File 29

3E - Close File 30

3F - Read From File 31

40 - Write to File 32

41 - Delete File 33

42 - Position File Pointer 34

43 - Get/Set File Attributes 35

44 - I/O Control for Device 36

48 - Allocate Memory Block 38

49 - Release Memory Block 39

4B - Execute Program 40

4C - Terminate a Process 42

4D - Get Process Termination Status 43

4E - Find First Matching File 44

4F - Find Next Matching File 46

54 - Get Disk Verify Flag Setting 47

56 - Rename File 48

57 - Get/Set Date/Time of File 49

DO - Expand File 50

D1 - Reduce File 52

D2 - Return Absolute File Pointer 53

D3 - Return File Size 55

D4 - Return Free Memory Size 56

D5 - Get File Mark 57

D6 - Sound Error Tone 58

11

D7 - Set Error Tone 59
D8 - Get Program File Handle 60
D9 - Get Workspace File Handle 61

DA - Get i'th File Directory Entry

DB - Get Address of Free Memory 62
DC - Init Math Pack Data Area 63
DD - Set Timer Channel 64
DE - Set Alarm Data/Time 65
DF - Get Current Alarm Setting 66
E0 - Get/Set Event Flag 67
E1 - Set File Size Limit 69
E2 - Set Function Key Definition 70
E3 - Reopen File 71

E4 - Memory Management for Device Driver Installer 72
E5 - Touch Panel Support 73
E6 - Lock File Open 74

E7 - Get/Set Alarm Program Definition 75

12

FUNCTION 01 h - Read Keyboard and Echo

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX xxxxxxxx Entry: AH = 01 h (function code)

Exit AX = Character Typed

Function 01 h waits for a character to be typed at the keyboard, then echos the character to

the display and returns it in AX.

13

FUNCTION 02h Display Characters on Console

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX

XXXXXXXX

Entry: AH = 02h (function code)

DL = Character to be displayed

Exit: None

Function 02h displays the character in DL on the LCD display

14

FUNCTION 08h - Read Keyboard Without Echo

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX Entry: AH = 08h (function code)

Exit: AX = Character from keyboard

Function 08h waits for a character to be typed on the keyboard, and then returns it in AX. The

typed character is not echoed to the LCD display.

15

FUNCTION 09h - Display Character String

AX

BX

CX

DX

SP:

BP:

SJ:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX

XXXXXXXX XXXXXXXX

Entry AH = 09h (function code)

DS:DX = String to be display

Exit None

xxxxxxxxxxxxxxxxxxx

Function 09h will display a string of characters on the LCD display. DX contains the offset

(from the segment in DS) of the first character in the string. The string must be terminated with

a JX character. The ^character is not displayed.

16

FUNCTION OBh - Check Keyboard Status

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX Entry: AH = OBh (function code)

Exit: AL = OOh - No characters waiting

FFh - Characters waiting

Function OBh checks the keyboard type-ahead buffer to see if any characters are waiting to be

read. It will return AL = 00 if no characters are waiting, or AL = OFFh if any characters are

waiting.

17

FUNCTION OCh - Flush Keyboard Buffer, Read Keyboard

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX Entry: AH = OCh (function code)

AL = 00h, 01 h, 08h

(function to perform after flushing

keyboard buffer

Exit: AX = Depends upon entry value

Function OCh will clear any characters waiting from the keyboard type-ahead buffer. After

clearing the buffer, the function will then perform one of the following actions depending upon

the contents of register AL:

AL = 01 h, 08h - The corresponding HH O/S function will be executed.

AL = any other value - Return immediately

18

FUNCTION 25h - Set Interrupt Vector

AX:

BX;

CX:

DX:

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

ss

ES

Entry; AH = 25h (function code)

AL = Interrupt number

DS:DX = Address of interrupt

Exit None

XXXXXXXXXXXXXXXXXXX

Function 25h is used to set an interrupt vector in low memory to point to an interrupt handler

routine.

19

FUNCTION 29h - Parse File Name

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX Entry: AH = 25h (function code)

AL = Wild cards flag

DS:SI = Pointer to input string

DS:DI = Pointer to output buffer

xxxxxxxxxxxxxxxxxxx Exit

xxxxxxxxxxxxxxxxxxx

SI = Pointer to terminating character

AX = Error code if error

xxxxxxxxxxxxxxxxxxx

Function 29h will parse an ASCIIZ string containing a file specification and return a structure

containing the name broken into its component parts. The structure returned will have the

following form:

Field Length

NAME 8

EXT 3

DEVICE 8
NAME.FLAG 1

EXT_FLAG 1

DEVICE_FLAG 1

File name
File extension

Device name
File name present flag

File extension present flag

Device name present flag

If the input string contained the name of a device rather than a file, the device name will be in

the DEVICE field, and the DEVICE_FLAG will be set.

if an error is discovered in the input string, the carry flag will be set, and an error code will be

in AX. In all cases, on return, SI will point to the last character used in parsing the name.
Normally this will be the terminating 0. If an error occurs, however, SI will point to the

character at which the error was detected.

20

FUNCTION 2Ah - Get Date

AX

BX

CX

DX

SP:

BP:

SI:

DI:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: AH = 2Ah (function code)

Exit: AL = Day of week
CX = Year

DH = Month
DL = Day

Function 2Ah returns the current date set in the operating system. The format of the values

returned is:

CX
DH
DL
AL

Year (1 980 - 2099)

Month (1 - 12; 1 = January, 2 =

Day (1 -31)

Day of week (0 - 6; = Sun., .

= February, etc.)

... 6 = Sat.)

21

FUNCTION 2Bh - Set Date

AX

BX

CX

DX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

SP:

BP:

SI:

Dl:

IP:

FLG

CS:

DS:

SS:

ES:

Entry:

Exit:

AH = 2Bh (function code)

CX = Year

DH = Month

DL = Day

AL = status code

Function 2Bh sets the current date set the operating system. The format of the parameters is:

CX
DH
DL

-Year (1980- 2099)
- Month (1 - 12; 1 = January, 2= February, etc.)

- Day (1 -31)

On return from the function, the carry flag will be reset if the operation succeeded. If the carry

flag is set, the operations failed because of an error in the specified data.

22

FUNCTION 2Ch - Get Time

AX

BX

cx

DX

SP:

BP:

SI:

Dl:

XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: AH = 2Ch (function code)

Exit: CH = Hour

CL = Minutes

DH = Seconds

DL = Hundredths of seconds

IP:

FLG

CS

DS

SS

ES

Function 2Ch is used to get the current time from the operating system. The format of the

values returned is:

CH
CL
DH
DL

- Hour (0-23)

Minutes (0-59)

- Seconds (0-59)

- Hundredths of seconds (0-99)

23

FUNCTION 2Dh - Set Time

AX:

BX

CX

DX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

ss

ES

Entry

Exit:

AH = 2Dh (function code)

CH = Hours

CL = Minutes

DH = Seconds

DL = Hundredths of seconds

AL = status code

Function 2Dh is used to set the current time in the operating system. The format of the

parameters is:

CH
CL
DH
DL

- Hour (0-23)

- Minutes (0-59)

- Seconds (0-59)

- Hundredths of seconds (0-99)

On return, the carry flag will be reset if the operation succeeded. If the carry flag is set, the

operation failed because of an error in the specified time.

24

FUNCTION 2Eh - Set Disk Verify After Write Flag

AX: xxxxxxxx xxxxxxxx Entry:

Exit:

AH = 2Eh (function code)

AL = Verify Flag Setting

BX:

CX:

DX:

SP:

BP:

SI:
none

Dl:

IP:

FL(3

CS

DS

SS

ES

Function 2Eh controls the setting of the disk verify after write flag. If this
;

flag is set ther.any

disk write operation will be verified after it is completed. This increases the reliability of disk

write operations, but reduces performance considerably.

If AL = on entry, the flag will be reset and no verification will take place.

If AL = 1 on entry, the flag will be set and verification will occur after each write.

25

FUNCTION 35h - Get Interrupt Vector

AX

BX

CX

DX

xxxxxxxx XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: AH = 35h (function code)

AL = Interrupt number

SP:

BP:

SI:

Dl:

IP:

FLG

Exit: ES:BX - Pointer to interrupt handler

CS

DS

SS

ES XXXXXXXXXXXXXXXXXXX

Function 35h returns the interrupt vector associated with a given interrupt.

26

FUNCTION 36h - Get Disk Free Space

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry

Exit

AH = 36h (function code)

DL = Drive number

If carry not set

AX = Sectors per cluster

BX = Number of free clusters

CX = Bytes per sector

DX = Total clusters per drive

If carry set

AX = error code

CS

DS

SS

ES

This function is used to determine space characteristics about the specified disk drive

27

FUNC1

AX

BX

CX

DX

XXXXXXXX xxxxxxxx

xxxxxxxx xxxxxxxx

XXXXXXXX xxxxxxxx

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

Entry: AH = 3Ch (function code)

CX = File attributes

DS:DX = Pointer to file name

Exit AX = status code or file handle

Function 3Ch creates a new file, or truncates an existing file to zero length in preparation for

writing. If the file did not exist, then a new file will be created and given the specified

attributes. If the file already existed, it will be truncated to zero length.

On return from the function, the carry flag will be reset if the operation succeeded. In this

case, AX will contain a file handle which is open for read/write access on the file, with the

pointer to the current position in the file set to point to the beginning of the file. If the carry flag

is set, an error occurred, and the status code is in AX.

Error returns:

28

FUNCTION 3Dh - Open File

AX

BX

CX

DX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: AH = 3Dh (function code)

AL = access type

DS:DX = File name

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

Exit; AX = status code or file handle

XXXXXXXXXXXXXXXXXXX

Function 3Dh will open a file for access. On entry to the function, DX specifies the offset, from

the segment in DS, of an ASCIIZ string specifying the name of the file to open. AL specifies

the type of access requested. The following access types are defined:

Access

1

2

Description

Read only

Write only

Read/Write

On return from the function, the carry flag is reset if the operation succeeded. In this case, AX

contains a file handle opened for the requested access and the pointer to the current position

is set to the beginning of the file. If the carry flag is set, an error occurred and the status code

is in AX.

Error Returns:

29

FUNCTION 3Eh - Close File

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry; AH = 3Eh (function code)

BX = File handle

Exit: Status code

Function 3Eh closes a file. On entry to the function, BX specifies the handle associated with

the file to be closed. On return from the function, the carry flag will be reset if no error

occurred. If the carry flag is set, an error occurred and the status code is in AX.

Error Returns:

30

FUNCTION 3Fh - Read From File

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: AH = 3Fh
BX = File handle

CX = Number of bytes to read

DS:DX = Buffer address

Exit: AX = status code or number of bytes

read

xxxxxxxxxxxxxxxxxxx

Function 3Fh reads a block of data from an opened file. On entry to the function, BX contains

a file handle for a currently open file, CX contains the maximum number of bytes to read, and
DX contains the offset, from the segment in DS, of the buffer to receive the data.

On return from the function, the carry flag is set if no error occurred. In this case, AX contains

the actual number of bytes transferred. If this value is less than the number requested, then

the end of file has been reached. If the carry flag is set on return, an error has occurred and
the status code is in AX.

Error Returns:

31

FUNCTION 40h - Write to File

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: AH = 40h (function code)

BX = File handle

CX = Bytes to write

DS:DX = Buffer address

Exit: AX = status code

xxxxxxxxxxxxxxxxxxx

Function 40h writes a block of data to a file. On entry, BX contains the file handle of a file

opened with write access, CX contains the number of bytes to transfer, and DX contains the

offset, from the segment in DS, of the buffer containing the data to write.

On return the carry flag will be reset if no errors occurred. If the Carry flag is set, an error

occurred and the status code is in AX.

Error Returns:

32

FUNCTION 41 h - Delete File

AX

BX

CX

DX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

SP;

BP:

SI:

PI-

IP:

FLG

CS

DS

SS

ES

Entry: AH = 41 h (function code)

DS:DX = File name

Exit: AX = Status code

XXXXXXXXXXXXXXXXXXX

Function 41 h removes a file from the file system. On entry, the function expects
:

DX o contain

the offset (from the segment in DS) of an ASCIIZ string specifying the name of the file to

delete. On return from the function, the carry flag will be reset if the operation succeeded. If

the carry flag is set, an error occurred and the status code identifying the error is in ax.

Error Returns:

33

FUNCTH

AX

BX

CX

DX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry AH = 42h (function code)

AL = Method

BX = File handle

CX:DX = Offset

SP:

BP:

SI:

Dl;

IP:

FLG

CS

DS

ss

ES

Exit AX = status code

Function 42h moves the pointer to the current position in the specified file. On entry to the

function, BX specifies the handle of a currently open file, CX:DX specifies the offset to use in

moving the file pointer, and AL specifies the method to employ. The following methods are

defined:

Method

1

2

Description

Move the pointer to CX bytes from the beginning of the file

Move the pointer to CX bytes from the current position

Move the pointer to CX bytes after the current end of the file

The value in CX:DX should be regarded as a 32 bit integer with the most significant 1 6 bits in

CX. Internal files are restricted to being no larger than 64k bytes in size. For internal files if CX
is not 0, an error will be returned.

With any of the above methods, it is possible to specify a location past the current end of the

file. If this occurs, the file will be extended as required to allow the operation to succeed. An

error will result if an attempt is made to position the file pointer beyond the 64k byte limit on

the size of an internal file.

Error Returns:

34

FUNCTION 43h - Get/Set File Attributes

AX: XXXXXXXX XXXXXXXX Entry

BX

CX

DX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

IP:

FLG

CS

DS

SS

ES

AH = 43h (function code)

AL = Operation to perform

CX = File attribute to set (if AL

DS:DX = File name
= 1)

SP:

BP:

SI: Exit

Dl:

AX = Status code

CX = Current file attribute (if AL = 0)

XXXXXXXXXXXXXXXXXXX

Function 43h allows an application to read or change the attributes of a file. On entry, AL

specifies the operation to perform. AL = causes the current attributes to be returned in CX.

AL = 1 causes the attributes in CX to be assigned to the file. DX specifies the offset (from the

segment in DS) of an ASCIIZ string which gives the name of the file. On return, if the carry

flag is reset the operation succeeded, if the carry flag is set, the operation failed and the

status code is in AX.

Error Returns:

35

FUNCTION 44h - I/O Control For Devices

AX

BX

CX

DX

SP:

BP;

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry

Exit

AH = 44h (function code)

AL = Request Type

BX = File handle

CX = Number of byte to read'write

DS:DX = Data buffer

AX = status code if carry set?

Request 0,1

DX = Device information

Requests 2,3,4,5

AX = number of bytes transferred

Requests 6,7

AL = device ready status

= not ready

FF = ready

Function 44h gets or sets device information associated with an opened handle, or sends/

receives a control string to a device handle.

The following Request Type values are allowed:

1

2

3

4

5

6

7

- Get device information

- Set device information

- Read from device control channel

- Write to device control channel
- Read from disk device control channel

- Write to disk device control channel

- Get device input status

- Get device output status

This function can be used to get information about device channels. Calls can be made upon

regular files as well, but only request types 0, 6, 7 are defined. All other requests return an

invalid function call error.

See the section on IOCTL strings for a description of the control strings which are defined for

each device in the system. When writing the control string, the count in CX gives the number

of bytes in the string. When reading a control string, the number in CX is the maximum
number of bytes to read, and the actual number read will be returned in AX.

36

The device information which is read/written with functions 0/1 is a 16 bit quantity in which the

information is bit encoded. The following bits are defined: (bit is the low bit)

Bit number Meaning

7 ISDEV - = this channel is a file

1 = this channel is a device

For Devices, these bits are defined:

ISCIN - This device is console input

1 ISCOT - This device is console output

5 MODE - = raw data mode
1 = interpreted data mode

14 CTRL - Specifies if the device can accept control strings

For Files, no other bits are defined.

The only bit which can be set is the MODE bit. This bit specifies if some interpretation of the

data is to be made by the device driver, or if the data is to be passed directly. This bit is only

meaningful for certain devices.

37

FUNCTION 48h - Allocate Memory Block

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

FS

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: BX - Number of paragraphs requested

Exit AX - Paragraphs address of allocated

memory or Error code

This function will allocate a block of memory of the requested size in the O/S absolute

memory region. A block allocated in this manner is guaranteed not to move from the time it is

allocated until it is released.

If the carry flag is cleared on return, AX will contain the paragraph address of the requested

memory block. If the carry flag is set, an error occurred, and the error code is in AX.

The allocated memory block is reserved for use by the requestor until it is released through

function 49h, or until the allocating program terminates. All memory blocks allocated by a

program are freed when it terminates.

38

FUNCTION 49h - Release Memory Block

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

xxxxxxxx xxxxxxxx Entry: ES - Address of block to free

Exit AX - Error code if carry set

xxxxxxxxxxxxxxxxxxx

This function will release back to the system a block of memory allocated through function

48h The user loads the paragraph address of the block to be freed into ES and then

performs the system call. On return, if the carry flag is not set, the memory block will have

been released back to the system. If the carry flag is set, an error occurred, and the error

code is in AX.

39

FUNCTION 4Bh - Execute Program

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

ss

ES

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: AH - 4Bh (function code)

DS:DX - Pointer to execution parameter

block

Exit: AX - Error code

This function is used to execute an applications program under the HH O/S. The value in

DS:DX is the address of an execution parameter block. This block consists of 4 words, with

the following meanings:

HIDFLG - = create non-hidden AMI
1 = create hidden AMI

APLPTR - Pointer to applications file name string

AMIPTR - Pointer to AMI file name string

PRMPTR - Pointer to parameter string

1. HIDFLG specifies whether a newly created AMI should be created as a hidden file or a non-

hidden file. This only affects AMI's which don't exist at the time of the exec and must be
created.

2. APLPTR points to a zero terminated string that specifies the name of an internal file which

contains the program to be executed.

3. AMIPTR points to a zero terminated string that specifies the name of the AMI file to use

while the application is running.

4. PRMPTR points to a zero terminated string that is passed to the application being executed

40

These three pointers give offsets relative to the segment address in DS. The parameter strings

must be in the same segment as the parameter block which points to them.

When control is passed to the application, CX:DX will point to a copy of the execution

parameter block. The application program may examine any of the strings pointed to by the

execution parameter block, but it should not modify them.

If on return, the carry flag is set, an error occurred while trying to execute the specified

program, and the error code will be in AX.

41

FUNCTION 4Ch - Terminate Process

AX

BX

CX

DX

XXXXXXXX XXXXXXXX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

Entry: AH - 4Ch (function code)

AL - Termination status code

Exit: Special

This function is used by an applications program to suspend execution. The AMI file for the

currently executing application will be closed, and control returned to the program which

invoked the one being terminated. The value in AL is a termination status code which the

parent process receiving control may interrogate via function 4Dh.

With a positive value specified in AL, this function call should be viewed as a process

suspension. Sufficient machine state is preserved in the AMI by HH O/S that the process can

be resumed at a later time. Thus, a subsequent call to function 4Bh (execute program)

specifying the same program and AMI, will cause control to return to the instruction folfowing

the one invoking function 4Ch. This means that with a positive termination code in AL, it is

possible for function 4Ch to return to the caller.

When a suspended process is resumed, the parameters in the registers after the return from

function 4Ch will be similar to those when a program is initially invoked. CS:DX will point to a

copy of the exec parameter block that caused the re-invocation of the process. The resuming

process may examine the new parameter block to determine what action to take.

With a negative termination code in AL, this function should be viewed as a process

termination. The calling program's AMI file is closed and then deleted. When the AMI file is

deleted all process state is lost, and it is not possible to resume. In this case, function 4Ch wi

not return to the caller.

42

FUNCTION 4Dh - Retrieve Process Termination Code

Entry: AH - 4Dh (function code)
AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

ss

ES

XXXXXXXX XXXXXXXX

Exit: AX - Process termination code

Function 4Dh will return the termination code set by the last program which terminated via

function 4Ch.

43

FUNCTION 4Eh - Find First Matching File

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry; AH = 4Eh (function code)

CX = Search attributes

DS:DX = File reference

Exit: AX = Status code
CX:DX = Information buffer

XXXXXXXXXXXXXXXXXXX

Function 4Eh takes a file reference containing wild-card characters and returns a data block

containing information about the first directory entry which matches the file reference. On
entry, DX contains the offset (from the segment in DS) of an ASCIIZ string specifying the file

reference. CX contains file attributes which restrict the search. On return, if the carry flag is

reset the operation succeeded. CX contains the segment address and DX the offset of a

buffer containing information about the matched file. The information in the buffer is in the

following format:

Location Description

File attributes

1-2 File time

3-4 File date
5-8 File size

9-21 File name (ASCIIZ string)

1. File Attributes - This byte contains the attribute

defined:

01h - File is read only

02h - File is hidden

04h - File is a system file

20h - Archive bit

44

2. File Time - This word contains the time of the last file modification. Times are stored in

packed binary in the following format:

HHHHHMMMMMMSSSSS
H is hours, 0-23

M is minutes, 0-59

S is seconds, 0-29 (two second increment)

3. File Date - This word contains the date of the last time the file was modified. Dates are

stored in packed binary in the following format:

YYYYYYYMMMMDDDDD
Y is year, 0-119 (1980-2099)

M is month, 1-12

D is day, 1-31

4. File Size - This field contains 2 words which give the size of the file in bytes. The least

significant word is stored first.

5. File Name - This is an ASCHZ string which gives the name of the file. Disk files do not have

the drive specifier given.

If the carry flag is set on return, the operation failed and the status code is in AX.

Error Returns:

45

FUNCTION 4Fh - Find Next Matching File

AX

BX

CX

DX

SP;

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: AH = 4Fh (function code)

Exit: AX = Status code

CX:DX = File information buffer

Function 4Fh returns a file information block identifying the next matching file following a call

to function 4Eh. It is necessary to call function 4Eh before calling function 4Fh. On return, if

the carry flag is reset the operation succeeded and CX:DX contain the address of a file

information block in the same format as that returned by function 4Eh. If the carry flag is set

on return, the operation failed, and the status code is in AX.

Error Returns:

46

FUNCTION 54h - Get Setting of Disk Verify Flag

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX Entry: AH = 54h (function code)

Exit AL = Verify flag setting

This function returns the current setting of the disk verify after write flag. On exit, AL will

contain the current flag setting. If the flag is set (AL = 1), then disk write operations are being

verified. If the flag is clear (AL = 0), disk write operations are not being verified.

47

FUNCTION 56h - Rename File

AX

BX

CX

DX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

Entry: AH = 56h (function code)

DS:DX = Original file name
ES:CX = New file name

Fxit: AX = status code

XXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXX

Function 56h will change the name of an existing file. DS:DX contains the address of an

ASCIIZ string specifying the file to be renamed. ES:CX contains the address of an ASCIIZ

string specifying the new name that the file is to be given.

The file directory is searched for a file matching the first specification. This file specification

may contain wild-card characters. The first matching directory entry found will be changed to

match the file name given in the second specification. The second specification may also

contain wild-card characters. Anywhere a '?' occurs in the second specification, the

corresponding characters in the existing directory entry will not be changed.

Following the return from this function, the carry flag will be set and the error code will be in

AX if an error occurred.

48

FUNCTION 57h - Get/Set File Date/Time

AX: XXXXXXXX XXXXXXXX Entry:

BX

CX

DX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

AH = 57h (function code)

AL = Operation to perform

BX = File handle

CX = Time to set (AL = 1

)

DX = Date to set (AL = 1

)

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

Exit AX = Status code

CX = Current file time (AL = 0)

DX = Current file date (AL = 0)

Function 57h returns or sets the last-write date and time in the directory entry for a file. On

entry, AL specifies the operation to be performed. If AL = 0, the current date/time of the file

will be returned in CX/DX. If AL = 1, the date/time in CX/DX will be assigned to the file. The

time in CX and the date in DX are stored as fields of bits with the following format:

CX - HHHHHMMMMMMSSSSS
H - number of hours (0-23)

M - number of minutes (0-59)

S - number of 2 second increments (0-29)

DX - YYYYYYYMMMMDDDDD
Y - number of years since 1980 (0-119)

M - number of the month (1-12)

D - number of the day (1-31)

On return, if the carry flag is reset the operation succeeded. If the carry flag is set, an error

occurred and the status code is in AX.

Error Returns:

49

FUNCTION DOh - Expand File

AX

BX

CX

DX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

Entry: AH
AL
BX
CX

Exit: AX
CX

DOh (function code)

Method
File handle

Size of block to insert

Error Code
Number of bytes added or size of

largest possible block that could

be added

Function DOh will cause a file to be enlarged by the specified number of bytes. On entry to the

function, the user specifies the file handle for a previously opened file in BX, the amount by

which the file is to be expanded in CX, and the desired method in AL. The following methods

are defined:

Method

1

2

Description

Expand the file at the beginning

Expand the file at the current position

Expand the file at the end of file

On return from the function call, the carry flag will be reset if the operation was successful,

and DX will contain the number of bytes added to the file. If the carry flag is set, an error

occurred, and an error code is in AX. If the call failed because of insufficient memory to carry

out the operation, then the file will not have been modified, and the size of the largest block

that could be added to the file will be in CX.

50

Internal files under HH 0/S have a file size limit. Files are not allowed to grow larger than the

current size limit on that file. The default size limit for an internal file is FFFFh bytes (64k-1).

By use of function E1h, it is possible to set smaller size limits. An expand file request which

would cause the file to exceed the current size limit on that file will fail. The value returned in

CX will be the size of the largest possible block that could be added before the current size

limit is exceeded.

If methods 1, or 2 are requested, the current file data will be moved to form a hole of the

requested size. For method 2, the byte at the current file position will be moved to become the

next byte following the insertion. Following the operation, the current file position will be set to

point to the beginning of the inserted block.

Error Returns:

51

FUNCTION D1h - Reduce File

AX

BX

CX

DX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: AH = D1h (function code)

AL = Method

BX = File handle

CX = Number of bytes to delete

SP;

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

Exit; AX = Error code

CX = Number of bytes deleted

Function D1h is used to remove a block of data from a file and cause the file to shrink by the

amount deleted. On entry to the function, the handle of a currently opened file is passed in

BX, the number of bytes to delete are specified in CX, and the deletion method is specified in

AL. The allowed deletion methods are:

Method Description

1

2

Delete the specified number of bytes at the beginning of the file.

Delete the specified number of bytes beginning at the current position

Delete the specified number of bytes at the end of the file.

On return from the function, the carry flag will be set if an error occurred, and the error status

code will be in AX. If no error occurred, the carry flag will be reset and the actual number of

bytes deleted from the file will be in CX. If an attempt was made to delete past the end of the

file then the number returned in AX will be smaller than the requested amount. (This is not

considered an error by HH O/S.)

Error Returns:

52

FUNCTION D2h - Return Absolute File Pointer

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: AH = D2h (function code)

BX = file handle

Exit AX = Absolute file address status code

DX = Size of file in bytes

Function D2h is used to find the absolute memory address where a file is stored. The user

specifies the handle for a previously opened file in BX. On return from HH O/S, the carry flag

will be set if an error occurred, otherwise the memory segment address of the beginning of the

file will be contained in AX. The file is stored in contiguous, ascending memory locations

beginning at offset within this segment.

53

An application program may directly access the data contained in a file by placing the value

returned in AX into a segment register and then performing normal memory fetch/store

operations relative to that segment. Extreme caution must be taken when accessing a file in

this manner, as it is possible to affect memory locations beyond the end of the given file, and
thus destroy the integrity of the file system. The current size of the file will be returned in DX
when function D2h is performed. At other times, use function D3h to determine the current

size of the file and be careful not to go beyond that limit in making accesses to the file.

Furthermore, the segment address returned indicates the location of the file in memory at the

time of the function call. The file is not guaranteed to remain at this location. As a part of

normal file operations, HH O/S will move files within memory. Before moving any portion of

the file system, HH O/S will invoke interrupt 45h to indicate what portion of the file system is

moving and by how much. File system movement will only occur as a result of a system call

that aflocates an absolute memory block, or modifies the size of an internal file. Programs

which refer to absolute file addresses must either supply a File System Moving hook routine

(entered through INT 45h) or user function D2h to get the current address of the file after any

system call which may have caused it to move.

It is absolutely essential that the program know the correct address before any absolute

access to a file or catastrophic damage can be caused to the internal file system.

Error Returns;

5 - Access denied; The handle specified is not opened as a file, or the file

opened may not be accessed in this manner.

6 - Invalid handle; The file handle specified is not currently assigned.

54

FUNCTION D3h - Return File Size

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: AH = D3h (function code)

BX = File handle

Exit: AX = status code

CX:DX = File size in bytes

Function D3h returns the exact number of bytes occupied by the specified file. The file handle

of a previously opened file is passed to HH O/S in register BX. If the operation succeeds, the

number of bytes in the file is returned in CX:DX, with the most significant word in CX.

If the operation is not successful, the carry flag will be set on return, and AX will contain the

status code indicating the cause of the failure.

Error Returns:

5

6

- Access denied; The specifed handle did not refer to a file.

- Invalid file handle; The specified handle is not currently assigned.

55

FUNCTION D4h - Return Size of Free Memory

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX xxxxxxxx Entry: AH = D4h (function code)

Exit AX = Size of free memory

Function D4h returns the total number of paragraphs of free memory remaining in the system

56

FUNCTION D5h - Get File Mark

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX

XXXXXXXX XXXXXXXX

1

Entry: AH = D5h (function code)

BX = File handle

Exit AX = File mark

Function D5h returns a file status mark that can be used to test if a file has been modified.

The file mark is a 16 bit unsigned integer that is changed each time that a file is modified.

To use the file mark the following procedure can be used: Read the mark immediately before

closing the file and save the value. The next time the file is accessed, read the mark

immediately after the file is opened and compare with the previous value. If the values are

different, the file has been modified since the last time you closed it.

This function is only allowed on internal files. In order to maintain compatability with MS-DOS,

disk files do not have an access control mark.

57

FUNCTION D6h - Sound Error Tone

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: AH = D6h (function code)

BX = Tone channel number

Exit none

Function D6h is used to sound an error tone. The frequency and duration of the tone are set

via function D7h.

58

FUNCTION D7h - Get or Set Error Tone Values

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

xxxxxxxx

xxxxxxxx xxxxxxxx

xxxxxxxx xxxxxxxx

xxxxxxxx xxxxxxxx

Entry: AH
AL
BX
CX
DX

D7h (function code)

= Get, 1 -Set
Tone channel number

Error tone frequency

Error tone duration (2.5 msec
increments)

Exit: none

This function is used to set the frequency and duration of the error tone sounded when

function D6h is executed. The frequency is specified in Hertz and is passed in CX. The

duration is specified in 2.5 millisecond increments and is passed in DX. Setting either the

frequency or the duration to disables the error tone.

If AL is on entry, the current settings are returned. If AL is 1 on entry, the specified values

are set.

There are 5 tone channels provided, numbered 0-4. Channels and 1 are reserved for use by

Microsoft applications, and should not be used.

59

FUNCTION D8h - Get Application File Handle

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX Entry: AH = D8h (function code)

Exit; AX - File handle

This function returns the fife handle of the currently executing applications program

60

FUNCTION D9h - Get AMI File Handle

AX

BX

CX

DX

XXXXXXXX XXXXXXXX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

Entry: AH = D9h (function code)

Exit: AX - File handle

This function returns the file handle of the AMI file which is in use by the currently executing

application.

61

FUNCTION DBh - Get Free Memory Address

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

ss

ES

XXXXXXXX xxxxxxxx Entry: AH = DBh (function code)

Exit; AX - Free memory address

This function returns the paragraph address of the beginning of the system free memory pool.

Function D5h may be used to find the number of free paragraphs of memory in the system. It

is important to note that the free memory reported by function D5h is not guaranteed to be

located within the free memory pool. HH O/S uses optimization methods for speeding growth

of internal files which cause excess space to be allocated to recently accessed files. This

reduces the number of times that portions of the file system must be moved when files grow in

size.

Applications programs should not attempt to use the free memory pool as scratch work space

and so, should not use this function. It is provided to allow other operating systems and

system utilities to find the end of memory used by the HH O/S, so that they can coexist with

the HH O/S internal file system.

62

FUNCTION DCh - Initialize Math Pack Area

AX

BX

CX

DX

SP:

BP;

SI:

Dl:

IP:

FLG

CS

DS

ss

ES

XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: AH = DCh (function code)

BX = File Handle

DX = Error trap vector

Exit; AX - Error status code

Function DCh will initialize the math pack area in the specified file. The math pack area

contains working storage used by the math pack. See the math pack section for a description

of the user accessible data items within the math pack area.

On entry, BX contains the file handle of the opened internal file to be initialized, DX contains

the offset of an error handler routine which will receive control when the math pack detects an

error.

On exit, if the carry flag is reset, the math pack area was successfully initialized. If the carry

flag is set, an error occurred and the error code is in AX.

63

FUNCTION DDh - Set Timer Channel

AX

BX

CX

DX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

SP:

BP:

SI:

DI:

IP:

FLG

CS

DS

SS

ES

Entry:

Exit:

AH = DDh (function code)

AL = Channel mode
= One shot timer

1 = Repeating timer

2 = Start elapsed time

3 = Query elapsed time

4 = Set auto timeout delay

5 = Get auto timeout status

6 = Enable auto timeout

7 = Disable auto timeout

BX = Timer channel number
(ignored for modes 4-7)

CX = Time delay

(ignored for modes 2-3)

For mode 3

CX = Elapsed time

For mode 5

CX = Current auto timeout status

Function DDh accesses the event timer portion of the HH O/S event flag facility. HH O/S
supports 8 programmable timers which can be set to signal an event flag at the end of the

specified time interval.

On entry, BX specifies the timer channel number to be set, (0-7), CX specifies the number of

seconds for the timeout interval, (0-65535), and AL specifies the timer mode. Timer mode is

a one-shot timer. It will wait the specified number of seconds and set the flag. Timer mode 1

is a repeating timer, it will set the flag every CX seconds until the channel is reset.

Timer modes 2-3 are used for counting elapsed time. Mode 2 will place the timer channel in

elapsed time mode, and set the elapsed time to 0. Timer mode 3 will return the current value

of the elapsed time counter in register CX.

Specifying a time interval in CX of seconds and mode or 1 will disable the channel.

Timer channels 0-1 are reserved for use by Microsoft, and should not be used.

64

FUNCTION DEh - Set Alarm Date/Time

AX XXXXXXXX XXXXXXXX Entry:

Exit;

AH = DEh (function code)

BX XXXXXXXX XXXXXXXX AL = Alarm type code
= Restart alarm

CX XXXXXXXX XXXXXXXX 1 = Annunciator alarm

DX XXXXXXXX XXXXXXXX BX = Year (1980-2099)

CH = Month (1-12)

CL = Day (1-31)

DH = Hours (0-23)SP

BP DL = Minutes (0-59)

SI:

Dl: -

CY not set - none

CY set - Error code in AXIP:

FLC
\

CS

DS

SS

ES

This function is used to set the next alarm Date/Time for the internal alarm system.

When a restart alarm occurs, if the machine is powered off, it will be turned on and the

application program set via function XXh will be run. If the machine is powered on when the

restart alarm occurs, it will be ignored.

When an annunciator alarm occurs, the system alarm event flag will be set. This will cause

the alarm annunciator to flash on the bottom line of the system display. See function EOh for a

description of the system event flags.

65

FUNCTION DFh - Get Alarm Date/Time

AX

BX

CX

DX

xxxxxxxx xxxxxxxx

xxxxxxxx xxxxxxxx

xxxxxxxx xxxxxxxx

xxxxxxxx xxxxxxxx

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES:

Entry:

Exit

AH = DFh (function code)

AL = Alarm type code
= Restart alarm

1 = Annunciator alarm

CY not set

AL = Day of week (0-6)

BX = Year (1980-2099)

CH = Month (1-12)

CL = Day (1-31)

DH = Hours (0-23)

DL = Minutes (0-59)

CYset
AX = Error code

This function is used to get the current setting of the next alarm in the internal alarm system

See function DEh for a description of restart and annunciator alarms.

66

FUNCTION EOh - Get/Set Event Flag State

AX

BX

CX

DX

SP:

BP:

S!:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry AH
AL

BX
CX

EOh (function code)

Operation to perform

= Get current state

1 = Set new state

Event number

New value (for AL = 1

Exit: AX = Current state

(for AL = 0)

This function is used to check on the state of an event flag, or set a new state for an event

flag in the alarm system.

If AL = 0, the current state of the specified event flag will be returned in AX. If AL = 1, the

specified event flag will be set to the state specified in CX (0 or 1).

The following event flag numbers are defined:

1

2

3

4
5 - 7

8- 15

16-31

= keyboard activity flag

= touch panel activity flag

= telephone ring detect flag

= break key detect flag

= software alarm flag

= reserved

= timer channels - 7

= comm activity flags for channels 0-15

The keyboard activity flag (event 0) is set whenever a character is sent from the keyboard

The touch panel activity flag (event 1) is set whenever a touch panel state change occurs.

(Only occurs on machines with touch panel hardware.)

67

The telephone ring detect flag (event 2) is set whenever a ring detect interrupt occurs, and will

be reset 30 seconds later. Whenever the ring detect flag is set, the ring detect annunciator on

the bottom line of the system display will flash. An application program may turn the ring

detect annunciator on or off by setting or resetting this event flag.

The break key detect flag (event 3) is set whenever the user presses the break key.

The alarm annunciator flag (event 4) is set when an annunciator type alarm set via function

DEh occurs. Whenever this event flag is set, the alarm annunciator on the bottom line of the

system display will flash. An application program may turn on or off this annunciator by setting

or resetting this event flag.

The timer channel flags (events 8-15) whenever the corresponding interval timer reaches its

set interval.

The com activity flags (events 16-31) will be set whenever a character is received on the

corresponding com channel.

With the exception of the telephone ring detect event flag, HH O/S does not reset the event

flags. It is the responsibility of the program monitoring the event to reset the flag.

68

FUNCTION E1h - Set File Size Limit

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: AH = E1h (function code)

BX = File Handle

CX:DX = Size limit to set

Exit: AX = Error code

Function E1h allows an upper limit to be placed on the size of a file. The file handle of an

opened file is specified in BX. The size limit to be set is specified in CX:DX with the high order

word in CX. After this call, any system call which would cause the file to expand Peyond the

specified limit will result in a 'File Too Big
1

error to be returned.

If the size limit specified in CX:DX is smaller than the current size of the file, the function call

will fail and a 'File Too Big' will be returned.

This function may only be applied to internal files, and the file size limit may not be set larger

than FFFFh. CX must always be when calling this function.

69

FUNCTION E2h - Set Function Key Definition

AX

BX

CX

DX

Entry

SP:

BP:

SI:

Dl:

Exit

IP;

FLG

CS:

DS

ss

ES:

70

FUNCTION E3h - Reopen File

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

Entry

Exit:

Error returns

71

FUNCTION E4h - Memory Management for Install

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

Entry

Exit

Error returns

72

FUNCTION E5h - Touch Panel Support

AX

BX

cx

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

OS

ss

ES

i i

f~
-••••

i

I

:

*

!

Entry

_4

Exit;

Error returns:

73

FUNCTION E6h - Lock File Open

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

ss

ES

Entry;

Exit:

Error returns

74

FUNCTION E7h - Get/Set Alarm Application

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

IP:

FLG

CS

DS

SS

ES

Entry

Exit

Error returns

75

HH 0/S Database Function Calls

The following function calls are used to access the database primitive functions contained in

the HH O/S,

All of the Database Functions receive parameters in the following manner:

AX

BX

CX

DX

SP:

BP:

SI:

Dl:

XXXXXXXX
;

XXXXXXXX

XXXXXXXX XXXXXXXX

Entry: AH = function code

DS:DX = Pointer to parameter block

Exit AX = Return value or Error code

IP:

FLG

CS

DS

ss

ES

The function code for the Database Function to perform is specified in AH. DS:DX contains a

pointer to the parameter block which contains the entry parameters for the specified function.

The format of the parameter block for each function is specified in the description of the

function.

On return, if the carry flag is set, an error occurred and the error code will be in AX. If the

carry flag is not set, the value in AX is the return value of the function. Functions which do not

specify any return values will return AX = 0.

76

The following gives a list of all database functions in numeric order:

00 - Create Database File

01 - Open Database File

02 - Close Database File

03 - Delete Database File

04 - Create Record

05 - Open Record

06 - Close Record

07 - Delete Record

08 - Get Field ID

09 - Get Field Data Type

0A - Get Field Name
0B - Create Field

0C - Delete Field

0D - Get Field From Open Record

0E - Put Field To Open Record

OF - Get Field From Specified Record

10 - Rename Field

1

1

- Find Matching Record

12 - Get Number of Records

13 -Sort File

14 - Get Current Sort Order

15 - Begin Query Definition

16 - End Query Definition

17 - Open Query Record

18 - Close Query Record

19 - Put Query Field

1A - Move Record

1B - Check Query Field

1C - Change Field Data Type

1

D

- Get Record Size

1

E

- Compare Records

1F - Put Field To Specified Record

77

Function OOh - Create Database File

Parameter Block:

00; FILE.NAME Pointer to file name

Return Value:

AX: STATUS File handle or error code

The FILENAME parameter contains the offset from the segment in DS of a string specifying

the name of the database file to be created. The database file name string is an ASCIIZ string

of up to 13 characters (counting terminating 0), There may not be a disk drive specifier in the

name, as database files must be in memory to be accessed.

A database file of the specified name will be created and initialized. If a database file with this

name already exists, it will be deleted and recreated as an empty file.

On return, if the create was successful, AX will contain a file handle which should be used for

future accesses to the file.

Error Returns:

78

Function 01 h - Open Database File

Parameter Block:

00:

01:

FILE_NAME

ACCESS-TYPE

Pointer to file name

= Read
1 = Write

2 = Read/Write

Return Value:

File handle or error codeAX: STATUS

The FILENAME parameter contains the offset from the segment in DS of a string specifying

the name of the database file to be opened. The database file name string is an ASCIIZ string

of up to 13 characters (including terminating 0). The file name string should not contain a disk

drive specification as database files must be resident in memory to be accessed.

The ACCESSTYPE parameter specifies the kind of access desired for the file. An attempt to

open a file with the Read Only attribute for Write or Read/Write will fail.

On return, if the open was successful, AX will contain a file handle which should be used for

future accesses to the file.

Error Returns:

79

Function 02 h - Close Database File

Parameter Block:

File handle of file to close00: FILEJHANDLE

Return Value:

Error codeAX: STATUS

The FILEHANDLE parameter specifies the file handle for a previously opened database file.

The file will be closed and the file handle released. The file is guaranteed to be closed after

this function returns, even if an error occurs.

Error Returns:

80

Function 03h - Delete Database File

Parameter Block:

Pointer to file name00: FILE_NAME

Return Value:

Error codeAX: STATUS

The FILENAME parameter contains the offset from the segment in DS of a string specifying

the name of the database file to be deleted.

The specified file will be deleted from the file system. If the specified file has the Read Only

attribute set, it will not be deleted and an error will be returned.

Error Returns:

81

Function 04h - Create Record

Parameter Block;

00: FILEJHANDLE

01:

Returr

RecordJD

i Value:

AX: STATUS

File handle

Record identifier

Error code

The FILEHANDLE parameter contains the file handle of a database file which was opened for

Write or Read/Write access.

The RECORDID parameter specifies the ID the record being created is to have. If the ID

specified is too large to be a legal ID, the highest legal ID will be used instead. It is not

possible to create a database with holes in the record numbering.

A new record will be created and all of the fields initialized to null values. The created record

will be open for read/write access.

There can only be one opened record at a time. This operation will fail if there is already a

record open.

Error Returns:

82

Function 05h - Open Record

Parameter Block:

00: FILE_HANDLE File Identifier

01: RECORD._ID Record Identifier

02: ACCESS.TYPE = Read

Returri Value:

1 = Write

2 = Read/Write

AX: STATUS Error code

The FILEHANDLE parameter contains the file handle for a previously opened database file.

The RECORDID parameter specifies the record ID of the record to open.

The ACCESSTYPE parameter specifies the type of access to be performed upon the record

The database file must have been opened with an access type that allows the requested

access type.

There can only be one opened record at a time. This operation will fail if there is already a

record open,

Error Returns:

83

Function 06h - Close Record

Parameter Block:

00: FILE_HANDLE File Identifier

Return Value:

AX: STATUS Record ID of closed record or error status

The FILEHANDLE parameter specifies the file handle for a previously opened database file.

The currently open record will be closed, and its record ID returned in AX.

Error Returns:

84

Function 07h - Delete Record

Parameter Block:

00: FILE_HANDLE File Identifier

01: RECORDJD Record Identifier

Return Value:

AX: STATUS Error code

The FILEHANDLE parameter contains the file handle for an open database file. The

RECORDID contains the record ID of the record to be deleted.

Deleting a record can cause the record ID's of other records to change. Any record ID's which

the application program is storing may become invalid when a delete operation is performed.

Deleting a record is not allowed if there is an open record in the database file. This function

will return an error if there is an open record.

Error Returns:

85

Function 08h - Get Field ID

Parameter Block:

00: FILE-HANDLE File to access

01: FIELD_NAME Pointer to field name

Return Value:

AX: STATUS Field Identifier or Err

The FILEHANDLE parameter contains the file handle for an open database file. The

FIELDNAME parameter contains the offset from the segment in DS of the character string

specifying the name of the field. The field name string is an ASCIIZ string up to 16 characters

in length.

The value returned in AX will be the Field Identifier to use when referring to this field.

Error Returns:

86

Function 09h - Get Field Type

Parameter Block:

00: FILE_HANDLE File Identifier

01: FIELDJD Field Identifier

Return Value:

AX: STATUS Field Data Typ

The FILEHANDLE parameter specifies the file handle for a previously opened database file.

The FIELDID parameter specifies the field to be accessed.

The Field Data Type of the specified field will be returned in AX. The following are the defined

field data types;

1 - Character

2 - Numeric

3 - Date

Error Returns:

87

Function OAh - Get Field Name

Parameter Block:

00: FILE-HANDLE File Identifier

01: FIELDJD Field Identifier

02: NAME_BUFFER Pointer to buffer to receive field name

Returrl Value:

AX: STATUS Field Identifier or

The FILEHANDLE parameter specifies the file handle of a previously opened database file.

The FIELDID parameter specifies the field to be accessed. The NAMEBUFFER parameter

specifies the offset from the segment in DS of a buffer to contain the returned name.

The name of the specified field will be returned as an ASCIIZ string with a maximum length of

17 bytes (16 characters plus terminator).

Error Returns:

88

Function OBh - Create Field

Parameter Block:

00: FILE_HANDLE File Identifier

01: FIELD_NAME Pointer to Field Name

02: FIELD_TYPE Field Data Type

Returri Value:

AX: STATUS Field Identifier or

Error code

The FILEHANDLE parameter specifies the file handle of a previously opened database file.

The FIELDNAME parameter specifies the offset from the segment in DS of an ASCIIZ string

which specifies the name of the field to be created. The field name may not be longer than 16

characters. If it is, it will be truncated to 16 characters. The FIELDTYPE parameter specifies

the field data type of the field to be created. The following field data types are defined;

1 - Character

2 - Numeric

3 - Date

Creation of a field is not allowed if there is an open record. This operation will fail if there is a

record open. A maximum of 64 fields may be defined.

Error Returns:

89

Function OCh - Delete Field

Parameter Block:

00: FILE_HANDLE File Identifier

01: FIELD_NAME Pointer to Field Name

Return Value:

AX: STATUS Error code

The FILEHANDLE parameter specifies the file handle of a previously opened database file.

The FIELDNAME parameter specifies the offset from the segment in DS of an ASCIIZ string

which gives the name of the field to be deleted.

Deletion of a field is not allowed if there is an open record. The operation will fail and return

an error code in this case.

The data for the specified field will be removed from all records in the specified file.

Error Returns:

90

Function ODh - Get Field From Open Record

Parameter Block:

00

01

02

03

FILEJHANDLE

FIELDJD

TRANSFEFLLENGTH

BUFFER

File Identifier

Field Identifier

Number of bytes to read

Pointer to buffer to receive data

Return Value:

AX: STATUS Number of bytes transferred or Error Code

The FILEHANDLE parameter specifies the file handle of a previously opened database file.

The FIELDID parameter specifies the field ID of the field to access. The TRANSFERLENGTH
parameter specifies the number of bytes to be read from the field. The BUFFER parameter
specifies the offset from the segment in DS of the buffer to receive the transferred data.

On return, AX will contain the actual number of bytes placed in the buffer.

The bytes transferred will always be taken starting at the beginning of the field data. It is not

possible to read a field in a series of partial reads.

Error Returns:

91

Function OEh - Put Field into Open Record

Parameter Block:

00

01

02

03

FILE_HANDLE

FIELDJD

TRANSFER_LENGTH

BUFFER

File Identifier

Field Identifier

Number of bytes to write

Pointer to buffer containing data to write

Return Value:

AX: STATUS Error Code

The FILEHANDLE parameter specifies the file handle of a previously opened database file.

The FIELDID parameter specifies the field ID of the field to access. The TRANSFERLENGTH
parameter specifies the number of bytes to be written to the field. The BUFFER parameter

specifies the offset from the segment in DS of the buffer containing the data to write.

If the operation succeeds, AX will contain a zero on return. Otherwise, the carry flag will be

set and AX will contain an error code.

The bytes transferred will always be written starting at the beginning of the field. It is not

possible to write a field in a series of partial writes.

Error Returns:

92

Function OFh - Get Field From Specified Record

Parameter Block:

00 FILEJHANDLE File Identifier

01 RECORD. ID Record Identifier

02 FIELD-ID Field Identifier

03 TRANSFER_LENGTH Number of bytes to read

04 BUFFER Pointer to buffer to receive date

Returri Value:

AX: STATUS Number of bytes transferred or

The FILEHANDLE parameter specifies the file handle of a previously opened database file.

The RECORDID parameter specifies the record from which the data is to be read. The

FIELDID parameter specifies the field ID of the field to access. The TRANSFERLENGTH
parameter specifies the number of bytes to be read from the field. The BUFFER parameter

specifies the offset from the segment in DS of the buffer to receive the transferred data.

On return, AX will contain the actual number of bytes placed in the buffer.

The bytes transferred will always be taken starting at the beginning of the field data. It is not

possible to read a field in a series of partial reads.

Error Returns:

93

Function 10h - Rename Field

Parameter Block:

00: FILE_HANDLE File Identifier

01: OLD-NAME Pointer to currenl

02: NEW.NAME Pointer to new ns

Returr1 Value:

AX: STATUS Field Identifier or

Error code

The FILEHANDLE parameter specifies the file handle of a previously opened database file

The OLDNAME parameter specifies the offset from the segment in DS of an ASCIIZ string

containing the name of the field. The NEWNAME parameter specifies the offset from the

segment in DS of an ASCIIZ string containing the new name to be given to the field.

Error Returns:

94

Function 11 h - Find Matching Record

Parameter Block:

00: FILE_HANDLE File Identifier

01: STARTING_RECORD Record ID to start search

02: SEARChLDIRECTION Search Direction (0 = forward)(1

03: SEARChLKEY Offset of query key buffer

04: SEARCH_KEY_SEGMENT Segment of query key buffer

Returr

AX:

1 Value:

STATUS Record ID of next record or Err

= backward)

This function will perform a query upon the specified database. The SEARCHKEYSEGMENT
SEARCHKEY specify the segment and offset to a buffer containing the query key to be used

to guide the search. Query keys are created by the use of functions 1 5h - 19h.

The search will begin with the record specified by the STARTINGRECORD parameter, and

proceed in the direction specified by SEARCHDIRECTION. The record ID of the first record

found that matches the query key will be returned. If the record specified by

STARTINGRECORD matches, its record ID will be returned.

See the section on Database Queries for a further description of the query process.

Error Returns:

95

Function 12h - Get Number of Records in File

Parameter Block:

00: FILE_HANDLE File Identifier

Return Value:

AX: STATUS Number of re

This function returns the count of records existing in the file specified by the FILEHANDLE
parameter.

Error Returns:

96

Function 13h - Specify Sort Key

Parameter Block:

00: FILEJHANDLE File Identifier

01: NUMBER_OF_KEYS Number of sort key fields

02: SORT_KEY Pointer to sort key

Return Value:

AX: STATUS Error code

This function is used to define a sort key for the specified database. A sort key is made up of

a series of sort key fields which have the following form:

DIRECTION

FIELDJD

byte

byte

= Descending,

1 = Ascending

Field to sort

As many sort key fields may be specified as there are fields in the database file. The sort

precedence of the keys is according to the order in which they are specified.

Error Returns:

97

Function 14h - Get Current Sort Key Definition

Parameter Block:

00: FILEJHANDLE File Identifier

01: NUMBER._OF_KEYS Number of sort key fields to return

02: SORT_KEY Buffer to receive sort key

Returri Value:

AX: STATUS Number of sort key fields or Error

This function will return all or a portion of the current sort key in effect for the specified

database file. The NUMBEROFKEYS field specifies the number of key fields to be returned.

The key fields returned will always be the first N defined fields. The return value in AX
specifies the number of key fields actually transferred. This will always be less than or equal

to the number requested. If the NUMBEROFKEYS parameter is 0, no data will be transferred

but the return value in AX will be the number of fields in the sort key.

Error Returns:

98

Function 15h - Begin Query Definition

Parameter Block:

00 FILE_HANDLE File Identifier

01 MODE Query definition mode

02 BUFFEFLLENGTH Size of query definition buffer

03 BUFFER Offset of query key buffer

04 BUFFER_SEGMENT Segment of query key buffer

Returr

AX:

i Value:

STATUS Error Code

The FILEHANDLE parameter specifies the opened database file for which the query is to be

defined.

The MODE parameter may be either or 1 . In mode 0, the query key is not built, but the size

of the query key is determined. In this case, the buffer must be at least 16 bytes long. In

mode 1, the query key is actually built. In this case, the buffer must be large enough to

contain the query key being built. The size required may be determined by making a complete

pass through the query definition in mode 0. When the query definition is closed, the total size

of the query is returned. This much space can then be allocated for the buffer, and then

another pass made in mode 1 to define the query key.

The BUFFERLENGTH parameter specifies the size of the buffer.

The BUFFER and BUFFERSEGMENT parameters specify the segment and offset to the buffer

which contains the query key being defined.

Error Returns:

99

Function 16h - Close Query Definition

Parameter Block;

00

01

02

FILE-HANDLE

BUFFER

BUFFER_SEGMENT

File Identifier

Offset of query buffer

Segment of query key buffer

Return Value:

AX: STATUS Size of Query key

The FILEHANDLE parameter contains the file handle of an opened database file for which a

query if being constructed.

The BUFFER and BUFFERSEGMENT parameters specify the segment and offset to the buffer

which contains the query key being defined.

-

The return value in AX is the total size of the query key in bytes.

Error Returns:

100

Function 17h - Open Query Definition Record

Parameter Block:

00

01

02

FILE-HANDLE

BUFFER

BUFFEFL-SEGMENT

File Identifier

Offset of buffer

Segment of query key buffer

Return Value:

AX: STATUS Error code

The FILEHANDLE parameter contains the file handle of an opened database file for which a

query key is being constructed.

The BUFFER and BUFFERSEGMENT parameters specify the segment and offset to the buffer

which contains the query key being defined.

Error Returns:

101

Function 18h - Close Query Definition Record

Parameter Block:

00: FILE_HANDLE File Identifier

01: BUFFER Offset of buffer

02: BUFFEFLSEGMENT Segment of query key buffer

Returr i Value:

AX: STATUS Error code

The FILEHANDLE parameter contains the file handle of an opened database file for which a
query key is being constructed.

The BUFFER and BUFFERSEGMENT parameters specify the segment and offset to the buffer

which contains the query key being defined.

Error Returns:

102

Function 19h - Put Query Definition Field

Parameter Block:

00 FfLE_HANDLE File Identifier

01 BUFFER Offset of query buffer

02 BUFFER_SEGMENT Segment of query buffer

03 FIELD Pointer to field descriptor

Returr

AX:
i

Value:

STATUS Error Code

The FILEHANDLE parameter contains the file handle of an opened database file for which a

query key is being constructed.

The BUFFER and BUFFERSEGMENT parameters specify the segment and offset to the buffer

which contains the query key being defined.

The FIELD parameter contains the offset from the segment in DS of the field descriptor for the

query field. The field descriptor has the following format:

Pointer to literal string. Not used for field to field comparisons.

Type of comparison to perform.

Field ID of left operand field.

Count of characters for a literal value, or Field ID of second
operand for a field value.

TYPE - This byte specifies the type of comparison to perform. The low 4 bits contain

the relational operator to apply, the high 4 bits specify modes of the

comparison.

POINTER word

TYPE byte

OPERANDI byte

OPERAND2 byte

Relational Operators:
=
<> 1

< 2
> 3

< = 4

> = 5

103

Mode bits

bit 7 - = compare the field to a literal value. The length of the literal is

in OPERAND2 and POINTER is a pointer to the literal.

1 = compare the field to another field. The field ID of the second

fieldisinOPERAND2.

bit 6 - = Case is significant in string comparisons

1 = Case is not significant

bit 5 - = No wild cards are present

1 = Wild cards may be present

Error Returns:

104

Function 1 Ah - Move Record

Parameter Block:

00

01

02

FILE_HANDLE

OLD. ID

NEWJD

File Identifier

Original Record ID

New Record ID

Return Value:

AX: STATUS Error code

The FILEHANDLE parameter specifies the file handle of an opened database file.

The OLDID parameter specifies the record ID of an existing record which is to be moved,

The NEWID parameter specifies the record ID the record is to have. If this is greater than the

greatest valid ID, the greatest valid ID will be used instead.

Error Returns:

105

Function 1Bh - Check Query Definition Field

Parameter Block:

00: FILE_HANDLE

01: FIELD

Returr1 Value:

AX: STATUS

File Identifier

Pointer to field descriptor

This function checks a query definition field descriptor for errors.

The FILEHANDLE parameter contains the file handle of an opened database file.

The FIELD parameter contains the offset from the segment address in DS of a query field

descriptor. This descriptor is formatted as described in function 19h.

Error Returns:

106

Function 1Ch - Change Field Type

Parameter Block:

00: FILE.HANDLE File Identifier

01: FIELD Field Id of Field to change

02: TYPE New Field Type

Returr

AX:

i Value:

STATUS

This function will change the data type associated with an existing field in the specified file.

Any data stored in the changed field is not converted to the new type. The data conversion

must be performed by the program performing the change field type function call.

The procedure to use is: Perform the Change Field Type function call. For each record in the

file, read the data from the changed field, convert it to the new data type, and write it back to

the field.

Error Returns;

107

Function 1Dh - Get Record Size

Parameter Block;

00: FILEJHANDLE

01: RECORD

Return Value:

AX: STATUS

File Identifier

Record number

This function wfll return the total number of bytes occupied by the specified record in the

specified file. The value is returned in AX.

Error Returns:

108

Function 1Eh - Compare Two Records

Parameter Block;

00 FILE_HANDLE_1

01 RECORD_ID_1

02 FIELD_LIST_1

03 FILE_HANDLE_2

04 RECORD_ID_2

05 FIELD_LIST_2

06 COUNT |

Return Value:

AX: STATUS

File Identifier for first file

Record Number in first file

Pointer to field list for first file

File Identifier for second file

Record Number in second file

Pointer to field list for second file

Number of fields in field lists

This function will perform a comparison of two records. The records to be compared are

specified by giving a file handle and record ID for each record. It is legal for the file handles to

be the same, comparing two records in the same file, or different, comparing records from two

different files.

The field list parameters point to two arrays of field ID's which identify the fields to be

compared and the order in which to compare them. Both arrays must be the same length and

contain as many field ID's as specified in COUNT.

On return from the function, if the carry flag is set, an error occured and the error code is in

AX. Otherwise, AX will contain:

- Record_1 < Record_2

1 - Record_1 = Record_2

2 - Record_1 > Record_2

Error Returns:

109

Function 1Fh - Put Field to Specified Record

Parameter Block:

00 FILE_HANDLE_1 File Identifier

01 RECORDED Record Identifier

02 FIELDJD Field Identifier

03 TRANSFERJ.ENGTH Number of bytes to write

04 BUFFER Pointer to buffer to write

Returri Value:

AX: STATUS Number of bytes transfer

The FILEHANDLE parameter specifies the file handle of a previously opened database file.

The RECORDID parameter specifies the record to which the data is to be written. The

FIELDID parameter specifies the field ID of the field to access. The TRANSFERLENGTH
parameter specifies the number of bytes to be written to the field. The BUFFER parameter

specifies the offset from the segment in DS of the buffer containing the data to be written,

On return, AX will contain the actual number of bytes written to the field.

The bytes transferred will always be taken starting at the beginning of the buffer. It is not

possible to write a field in a series of partial writes.

Error Returns:

110

Application Programs Under HH O/S

Introduction

Applications programs in the HH O/S system reside in internal or memory files in the HH O/S
file system. Unlike a disk operating system which copies the program from disk into memory in

order to run, a program under HH O/S is always in memory, and runs directly from the

location it occupies in the file system. This achieves space reductions, as there are not two
copies of the program file in the system, but complicates the rules that the program must obey
in order to operate successfully.

An important point to note is that because the HH O/S internal file system is an in-memory file

system, and because there is no memory protection hardware available on the 8086 family

microprocessors, the internal file system is quite fragile. It is very easy for an ill behaved
program to damage the internal file system.

In addition to the file containing the program code to be executed, an application also needs
memory for a work space to contain variables, and working data. This work space is also

contained in a file within the internal file system. Application work space files are called AMI
(Application Memory Image) files.

An AMI file contains the working variables, stack space, and user data associated with an
invocation of an application program. Because the entire state of the running program is

contained within this one file, it is possible for the application to suspend execution, and then

resume where it left off at a later time. This allows there to be multiple invocations of a given

application in existence in the system at the same time, each AMI file corresponding to an
application is a separate invocation of that application.

It is the operational philosophy of the Microsoft Hand-Held applications software that a user

can exit an application at any time, execute a second application, and return to the first

application at a later time with exactly the same context as when he exited. This is

accomplished through the use of the AMI. The AMI file is a program 'state' file which contains

the complete operating state of an invocation of the application program. When the application

terminates, its complete state is preserved in the AMI file. Because of this, when the

application is re-executed it is possible to return to the exact place where it left off. A single

application will have as many 'states' as there are AMI files for that application. For this

reason, no variable data should be stored in the application code file.

Because the program's work space (AMI file) is actually a file within the file system, it is

necessary to understand something of how the file system works. A file is a contiguous block

of memory up to 64k bytes in size that has a name and a size associated with it. Because all

of the files in the system are stored contiguously, when a file grows or shrinks, all of the files

above it in the system must move up or down. This means that the file system is a very

dynamic, and the actual memory addresses where a file is located can be changing

frequently.

111

Each application has its code (be it native 8086 code or Microsoft QCODE) stored in an

application load file. The system manager program recognizes files having extensions of the

form: .!DD (where DD is a two digit number), as an application program file. Applications will

appear ordered (in the left hand column of the system manager display) by the number 'DD\

Programs are always invoked through the HH O/S execute program function (OSEXEC).

Normally, the call to OSEXEC will be made by the Microsoft System Manager program. The
OSEXEC call specifies the name of the application program to run, the name of the AMI file to

use, and an optional parameter string to be passed to the application. If the specified AMI file

exists, and is recognized as being a valid AMI for the specified application, execution of the

application will resume at the point where the application previously terminated, tf the specified

AMI file does not exist, a new one will be created, and control will be passed to an entry point

specified in the application header at the beginning of the application code file.

The application code file and the AMI file for the currently executing program are open while

the program is running, and the handles for these files may be obtained by using the Get

Application File Handle, and Get AMI File Handle system calls. By using the Expand file and

Reduce file system calls on the file handle for the current AMI, a program may expand or

reduce the size of its work space. Care should be taken when using the Reduce file call that

the reduction does not reduce the size of the file below that portion used for statically

allocated data and the program stack.

Programs terminate execution through the HH O/S terminate program function (OSTERM).

When a program terminates, control will be returned to the parent who invoked the program.

Normally, this will be the Microsoft System Manager program. The OSEXEC function in HH
O/S maintains a stack of program invocations to allow this call-return type operation to be

successful. This stack is large enough to allow 4 levels of depth.

A program may terminate for one of two reasons. It may complete its task, and terminate of its

own accord without user intervention, or it may be told to terminate by the user. The Microsoft

Hand-Held software allows the user to switch easily between applications programs. It does

this through the use of functions keys which have special meanings. In order to support this

philosophy of easily switching between applications, an application should be ready to

terminate anytime it is reading keyboard input. When the user requests the application to

terminate, the HH O/S will return a special <QUIT> character code to the application. When
the application sees this <QUIT> character, it must place itself into some orderly state and

then perform an OSTERM function. When an application terminates, it should release any

space that it has obtained for its data region that it is not actually using. This frees the

memory so that other applications can make use of it.

The <QUIT> character indicates that the user has requested the program to terminate, with

the presumption being that some other program will be run. In addition to the <QUIT>
character an application program may see a <SUSPEND> character. Like the <QUIT>, the

<SUSPEND> character indicates that the running program must place itself into an orderly

state, and then perform an OSTERM function. However, the <SUSPEND> character

additionally means that the user is executing a 'pop-up' function and that when that 'pop-up'

terminates, control will return to the program being <SUSPEND>ed. (An example of a 'pop-

up' function is the system calculator generally accessed through CTL-F2.)

112

The following is a list of the system special character codes, and what they mean:

1. <QUIT> - 6700h - Program termination request. The program should place itself into an

orderly state and perform an OSTERM function.

2. <SUSPEND> - C100h - Program suspend request. The program should place itself into an

orderly state and perform an OSTERM function.

3. <REDRAW> - C200h - The application program should redraw its screen. Programs should

redraw their screen on return from an OSTERM function, and additionally when they see

this character.

Program Header

Applications programs contain a header used by the HH O/S execute program function to

verify that the file is executable and to provide the necessary information for the program to be

executed. The format of this header is as follows:

Length Name

2 APLCHK
2 AMICOD
1 LDRID

1 AM IVIS

1 AMITYP
3 AM IEXT
2 APLIP

2 APLSP
2 APLSIZ

2 DATPOS
2 DATLOC
2 DATLEN

Total: 22

The following fields are optional. Their presence is determined by bit 40h in the LDRID byte

field. If this bit is set, these fields must be present in the application header.

2 APLSIZ

2 reserved

2 reserved

2 reserved

2 reserved

Total: 32

Each field is now described in detail

113

1. APLCHK - Application Check.

This is a one work 'magic' number (5F10 hex) used to determine whether this is an

application load file. Its presence ensures that a simple misnaming of a file to have an

application style extension will not cause a catastrophe.

It should be noted that attempting to execute a badly formed application load file is quite

likely to cause the handheld software to crash causing in memory file system damage.

2. AMICOD - AMI (application work space) Code.

The number in this field is used to identify an AMI (application work space) file as

belonging to a particular application program. Each application in the system should have

a unique number in this field. Numbers in the range 0-8FFFh are reserved for use by

Microsoft. Numbers in the range 8000h-FFFFh are for use by ISV's for their own
applications. When an application program terminates, the O/S places this code number

into a field in the header of the AMI file. When the application program is reactivated, the

AMI codes in the application header and the AMI header are checked to ensure that the

application actually owns the AMI.

If an application program were to be run using an AMI file owned by another application,

the result whould be a system crash that would almost certainly destroy the machine's

internal file system. This mechanism is a safeguard to help prevent that from occuring.

3. LDRID - Loader Id Code.

This is used by the handheld operating system EXEC call to determine the type of

application being run, and mode information about the exec being performed. The LDRID
byte is divided into two 4 bit fields. The low order 4 bits identify what type of program cod

the application file contains. The following values are defined:

0,1,3 8086 native code application

2,4 Microsoft qCode application

5 Application indirection file

The high order 4 bits contain bit encoded mode information about the exec. The following

bits are defined:

1 0h - reserved

20h - reserved

40h - Application header contains optional fields

80h - Use system workspace file KJXSYS006.SYS as the workspace for this

program.

1. Bit 40h - If this bit is set, the application header contains the optional fields listed below,

and their values will be checked during the exec process.

e

114

2. Bit 80h - If this bit is set, the system workspace file &.KSYS006.SYS will be used as the

workspace file. If another workspace file name is specified, it will be ignored and Ktt

SYS006.SYS will be used. There are certain restrictions on programs which use the

system workspace file. They are allowed to use the expand and reduce file system calls

to perform dynamic memory management, but must never reduce the size of the file

below its size on entry to the program. Programs which use the system workspace file

must also not quit with a negative termination code in AL (delete workspace file on

termination). Although the workspace file is not deleted on exit, each invocation of the

program will enter through the initial invocation entry point. Thus, the terminate process

system call will never return.

In order to use the system workspace file, the initial AMI size used by the program must

not be larger than 4096 bytes.

4. AMIVIS - AMI Visability Type.

Used by the system manager to determine when the application is to be displayed in the

left margin, possible values are.

ASCII code Display Style

V Always visible

S Only visible when owned files are present

| Always invisible (together with owned files)

5. AMITYP - Owned File Type

Used by system manager program to fell if owned files are AMI'S or data files, possible

values are:

ASCII code Owned file type

Owned files are AMIs

Owned files are data

6. AMI EXT - Owned Extension.

Used by system manager program to associate owned file with application, the 3 bytes

contain the ASCII characters that make up the extension. This field should only contain

upper case ASCII characters that are legal in a file name, and should be blank padded on

the right if less than 3 characters long.

7. APLIP - Application Initial Pc.

The address to jump to within the load file on application start up.

8. APLSP - Application Initial Sp.

Place to set SP within application's AMI before starting to execute the load file.

115

9. APLSIZ - Application Initial AMI size.

This word specifies the size in bytes that the AMI file should be when an application is

being run on a newly created AMI.

10. DATPOS - Data Image Position in Load File.

The position within the application load file that an image of the AMIs initialized data is to

be found.

11. DATLOC - Data Image Position in AMI.

The position within the AMI that the image of the initialized data is to be copfed.

12. DATLEN - Data Image length.

The length of the initialized data image.

The following define the optional fields in the application header.

1. APLSIZ - Program File Size

This word contains the size in bytes of the program code file. This word is checked against

the actual length of the file at exec time. If the current file size is less than APLSIZ, the

program code file is considered to be damaged and will not be run.

2. Reserved

Reserved for future use. Must be initialized to -1 (OFFFFh).

116

Device Drivers Under HH 0/S

The HH 0/S operating system recognizes a fixed set of devices. These devices are defined in

the Microsoft Hand Held BIOS Specification, and ordinarily, each device is mapped into a set

of routines in the BIOS which handle the function calls associated with that device. The

mapping between logical device and the routines that handle the functions for that device is

accomplished by each device being accessed through a different BIOS interrupt. By modifying

the interrupt vector associated with a given BIOS interrupt, it is possible to map the device to

a different set of routines to handle the device functions. The HH O/S installable Device Driver

mechanism defines a regular scheme for accomplishing this alternate mapping.

A device driver is an 8086 native code program that resides in a file in the HH O/S internal file

system. The device driver file contains a header that identifies it as a device driver to the

operating system, and provides the control information necessary to install it and remove it.

The installation process involves placing the device driver code in a protected place in

memory, calling an initialization entry point, and then modifying the interrupt vector for the

device to point to the function call entry point of the device driver. Removing the device driver

from the system involves calling a deactivation entry point in the driver, deallocating the

protected memory location that the driver occupied, and then modifying the interrupt vector to

point back to the original BIOS entry point.

General Rules For Device Drivers

Device drivers are 8086 machine code programs. They may occupy only a single segment of

memory which may be up to 64k bytes in size. During normal operation, the device driver

resides in a region of memory that allows it to stay at a fixed address. However, when a

device driver is removed from the system, it may be necessary to move other drivers to

different locations in order to recover the memory occupied by the driver being removed. For

this reason, the device driver must be coded in such a way that it can be relocated easily. As

long as the driver does not do FAR calls or jumps to locations within itself, and does not refer

to absolute segment addresses within itself for data access, it should be address independent.

The exception to this address independence would be interrupt service routines which are

contained in the device driver. Before HH O/S relocates the driver, it will call the initialization

entry point telling the driver where it is being relocated to. This gives the driver a chance to

perform any operations necessary before the code is moved.

Device drivers are called by HH O/S as a normal part of its operation. Because HH O/S in not

reentrant, device drivers may not call HH O/S for any reason.

117

Device Driver Header

The device driver header is used by the HH 0/S to verify that a file is a device driver, which

device the driver belongs to, and additional control information needed to install and remove it

The format of the header is as follows;

Field Name Field Length Datal

DVRCHK 2 bytes word

DEVNAM 8 bytes byte

DVCTRL 2 bytes word

DVFUNC 2 bytes word

VECNUM 1 byte byte

VECTOR 4 bytes dword

LENGTH 2 bytes word

Total length of header = 21 bytes

1. DVRCHK - This field is used by the HH O/S to verify that the file is a device driver. It must

contain the value 5C10h.

2. DEVNAM This field specifies the name of the device that this driver belongs to. The name

must be in upper case, left justified in the field, and padded with blanks to the right. The

following names are legal and represent the complete set of devices for which a driver may

be defined.

KYBD
LCD
GRPH
CASS
PRN
DSK
COM
BAR
TCH

- Keyboard input. BIOS INT 50h
- LCD Text output. BIOS INT 51 h

- LCD Graphics output. BIOS INT 52h
- Cassette. BIOS INT 53h
- Printer. BIOS INT 56h
- Disk support. BIOS INT 57h
- Communication/Modem support. BIOS INT 59h

- Bar Code Reader Support. BIOS INT 5Ah
- Touch Panel Support. BIOS INT 5Bh

3. DVCTRL - This field defines the control entry point of the device driver. This entry point will

be called when the device driver is installed, when the HH O/S finds it necessary to move

the device driver to a new location in memory, and when the device driver is being

removed.

4. DVFUNC - This is the device function entry point. This offset will be placed in the interrupt

vector when the device is installed.

5. VECNUM - This 1 byte field contains the interrupt vector number of the vector used by the

device.

118

6. VECTOR - This field is not initialized by the driver. It is used by the HH O/S to store the

vector to the BIOS driver for the device while the new driver is installed. When the driver is

removed, the values stored here are returned to the interrupt vector to restore the device to

the default BIOS driver for the device.

7. LENGTH - This field specifies the amount of memory in paragraphs that the device driver

requires. This much memory will be allocated for the driver when it is installed. This value

may be larger than the actual size of the file to allow space for buffers.

119

Descriptions of Device Driver Entry Points

The following entry points must be provided in a device driver file;

DVCTRL - Device Driver Control

This entry point is used for controlling the device driver file during installation and removal.

This entry point will be called with a FAR call. When initialization is complete, it should return

with a FAR return. The following functions are required:

Function - Initialize device driver.

INPUT: AH - Function Code
OUTPUT: none
ERRORS: CY set if error occured. BIOS error code in AL

This function is called when the device driver is first installed to initialize and activate the

driver. At the time that this function is called, all memory has been allocated, and the driver

located at the correct address for execution.

If the carry flag is set on return from function call 0, it is assumed that the initialization failed

and the driver installation will be aborted.

Function 1 - Prepare driver for movement

INPUT: AH - Function code

DX - Address driver will be moved to

OUTPUT: none
ERRORS: none (must succeed)

When the HH O/S finds it necessary to move a device driver, this function will be executed to

inform the driver of the fact. The device driver must place itself in a state so that it is safe for

the code to be moved to a new location.

Function 2 - Driver Movement Complete

INPUT: AH - Function code

OUTPUT: none
ERRORS: none (must succeed)

When the HH O/S has completed moving a device driver file, this function will be called to tell

the driver to reactivate itself. The driver will be at its new location when this call is made.

Function 3 - Deactivate Device Driver

INPUT: AH - Function code

OUTPUT: none
ERRORS: none (must succeed)

When the HH O/S is removing a device driver, this function will be called to tell the device

driver to deactivate itself. Following the return from this function, it is assumed that the system

is in a safe state for the device driver to be removed and the original BIOS driver restored.

120

DVFUNC - Device Function Entry Point

This entry point is the BIOS function call entry point. This routine will be entered through the

interrupt associated with the device. The entry and exit parameters depend upon the device

and the function being requested,

121

Section 2
BIOS

SPECIFICATION

Table of Contents

Page

Macroscopic Memory Map 1 25

Calling the BIOS 127

Software Interrupt Map 128

Installable Drivers 1 30

Device Request/Release Logic 131

Standard BIOS Error Codes 132

Character Code Definitions 1 33

Keyboard Support 1 3^

Screen (LCD) Text Support 138

Screen (LCD) Graphics Support 143

Cassette Support 149

Calendar, Time of Day Clock, and Alarm Support 152

Sound Support 1 55

Printer Support 156

Disk Support 158

Power On 165

General System Control Functions 17°

Interval Timer 173

Communications/Modem Support 174

Bar Code Reader Support 1 80

Touch Panel Support 182

123

Macroscopic Memory Map

FFFFF

OEM ROM BIOS Area

FDOOO

00000

MS ROM Code Area

ROM Expansion Area

RAM Expansion Area

RAM Managed by MS Code

RAM Managed by OEM BIOS

Interrupt Vectors

08000

38000

08000

00870

The interrupt vectors in the range 40h - 4Fh are reserved for use by the Microsoft ROM code,

any interrupts outside of this range may be used by the OEM.

The RAM Managed by the OEM BIOS is shown as being at lower addresses than the RAM
Managed by MS Code in the above diagram. This is for illustrative purposes only. When
control is transferred to the MS Code, the BIOS supplies parameters advising it of how much
RAM it has and where this RAM is located. The MS code will not use RAM outside of this

region (except for MS reserved interrupt vectors). The RAM Managed by the OEM BIOS can

actually be anywhere that is convenient. The only restriction is that the RAM assigned to the

MS code must be contiguous.

125

Similarly, the areas shown as MS ROM code area and ROM expansion area are merely

illustrative. The Hand-Held O/S contained in the MS ROM code is capable of managing up to

5 separate ROM regions. The ROM region containing the Hand-Held O/S must always be

resident, and at the same address. The other four regions may be removable, and located at

any address. When the BIOS transfers control to the MS code at power up it supplies to the

HH O/S a pointer to a table describing the number and locations of the ROMs installed in the

machine at that time.

126

Calling the BIOS

All BIOS calls are made via software interrupts. This presents a clean, easily documented

interface to the BIOS. If the user documentation describes only this interface to the BIOS and

a note discouraging the use of undocumented ROM routines, it will be possible for the ROM to

be easily revised without introducing incompatibilities.

Except as otherwise noted, registers that are not used to return values must be preserved by

the BIOS.

For any BIOS calls where no provisions are made for the BIOS to return error codes on "out-

of-range" parameters, it may be assumed that those BIOS functions will never be called with

an illegal parameter.

Except for MNI interrupt entry and exit, the BIOS functions should switch to a BIOS stack on

entry and restore the user's stack on exit. The BIOS may not assume that there is sufficient

space on the calling program's stack for it to function.

127

Software Interrupt Map

The BIOS software interrupt assignments are shown below. During cold start initialization, the

BIOS must initialize the interrupt vectors to point to the appropriate support routine within the

BIOS.

Interrupt Function

Number

40h-4Ah Reserved, initialized to point to a dummy I RET in the BIOS

48h Touch Panel Hook (IRET) — Unsupported Software Interrupt

4Ah Ring Detect Hook, initialized to point to a dummy IRET in the BIOS

4Bh Touch Panel Hook, initialized to point to a dummy IRET in the BIOS

4Ch RS-232 Receiver Queue Hook, initialized to point to a dummy IRET in the

BIOS

4Dh Interval Timer Hook, initialized to point to a dummy IRET in the BIOS

4Eh Power Low/Off Hook, initialized to point to a dummy IRET in the BIOS

4Fh Keyboard Queue Hook, initialized to point to a dummy IRET in the BIOS

50h Keyboard Support

51 h LCD Text Support

52h LCD Graphics Support

53h Cassette Support — Unsupported Software Interrupt

54h Calendar/Clock/Alarm Support

55h Sound Support

56h Printer Support

57h Disk Support

58h Power Off

59h Communications/Modem Support

5Ah Bar Code Reader Support — Unsupported Software Interrupt

5Bh Touch Pannel Support— Unsupported Software Interrupt

5Ch-6Fh Reserved, initialized to point to a dummy IRET in the BIOS

128

70h Keyboard Queue Hook, for European key layout (Initialized as IRET)

This hook can be invoked right before invocation of "INT 4FH — Keyboard

Queue Hook." Key layout can be modified for European key layouts by using

this hook.

71 h BIOS Special Extended Function Support. This support is provided for

installable printer drivers.

129

Installable Drivers

The Hand-Held software will support a limited form of installable device drivers. These device

drivers will be small machine code programs which will be contained in files within the file

system of the Hand-Held computer. The user will be able to install a particular file as a driver

for a particular device. When installed, the driver program will be placed in a protected

memory location by the Hand-Held O/S, and the appropriate interrupt vectors will be changed

to point to the installed driver. The driver program must then provide support for all specified

BIOS functions for the given device. As an example, an installed driver may be used to

perform special character code translation for a different printer than the one supported in the

BIOS printer driver code. It would be possible to configure the Hand-Held computer to support

different printers by providing an installable driver for each printer.

This mechanism does not provide for the inclusion of new devices not already described in

this document. It allows the replacement of the BIOS code to handle a specific type of device

with new code to handle that same type of device.

130

Device Request/Release Logic

In order to aid the Hand-Held operating system in performing device management to avoid

contention between devices, the BIOS must support a device request/release system.

The logic of this system is intended to be quite simple. A single flag for each device is all that

is required to implement it. When a device request function call is received, the 'in use' flag for

that device is tested. If the device is not in use, the flag is set to indicate that it is in use, and

the function returns with an error code of which indicates a successful request. If the 'in use'

flag is set, then the function returns a 'Device In Use' error. When a device release function

call is received, the 'in use' flag for the device is reset. It is not an error to release a device

which is not 'in use'. There is no record of who 'owns' the device, the flag merely indicates

that the device is in use.

131

Standard BIOS Error Codes

In the interrupt function definitions, references are made to standard BIOS error codes as
return values for a number of the interrupt functions. The following are the defined error codes
and their meanings:

Error Code Meaning

No Error Occurred
1 Receiver Queue Overflow

2 Parity Error

3 Device Not Available

4 Device In Use
5 Device Timeout
6 Receiver Overrun
7 Framing Error

8 Carrier Detect Absent (modem only)

9 Out of Paper (printer only)

10 General I/O Error

11 Operator Aborted the Operation by Typing BR
12 Checksum Error

13 Data Buffer Overflow

14 Write Protect

15 Device Not Ready
16 Seek Error

17 Data Not Found
18 Write Fault

19 Program Not Found
OFFh General Error (not one of the above errors)

132

Character Code Definitions

There are two cases with which the BIOS must be concerned when dealing with character

codes. The first case is that of which character codes are to be recognized for display on the

LCD display and what graphic shape is to be generated for each of these characters. The

second case concerns the set of characters which the user may type on the keyboard, and

what character codes are to be returned.

The character set used for output to the LCD display will be the same as is used in the IBM

PC. This character set contains 256 displayable characters using a single 8 bit code for each

character defined.

The character set used for input is a superset of the IBM PC input character set. A single byte

is used to return the codes 1 through 255 decimal, while an extended code is used for special

functions. The extended character codes are two byte codes with the first byte containing a

binary 0, and the second byte containing the extended character code. The BIOS routine that

returns keyboard characters will return single byte characters in the AL register. A two byte

extended code will be returned with AL = and the extended code in AH.

Keys which don't appear on the keyboard may be simulated by combinations of other keys.

The following table defines the extended function codes. Those shown with a Y are required,

those shown with an N are not required. The Cursor Left 4- and Cursor Right + characters

are not shown in the IBM Keyboard Mapping List. These operations will be mapped to function

keys in the IBM keyboard, and do not require special characters.

Extended Function IBM Keyboard Non-IBM Keyboard

Code Mapping Mapping

Y Break Break Break

N 3 ASCII NUL ASCII NUL ASCII NUL
Y 15 Back Tab Back Tab Shift TAB

Y 16-25 ALT Q. W, E, R ALT Q, W, E, R ALT Q, W, E, R

ALT T, Y, U, I, ALT T, Y, U, I, ALT T, Y, U, I,

ALT O, P ALT O, P ALT 0, P
Y 30-38 ALT A, S, D, F ALT A, S, D, F ALT A, S, D, F

ALT G, H, J, K ALT G, H, J, K ALT G, H, J, K
ALT L ALTL ALTL

Y 44-50 ALT Z, X, C, V ALT Z, X, C, V ALT Z, X, C, V
ALT B, N, M ALT B, N, M ALT B, N, M

Y 59-68 F1-F10 F1-F10 F1-F10

Y 71 Cursor Left + + Home CTRL Cursor Left

Y 72 Cursor Up Cursor Up Cursor Up
Y 73 Cursor Up - Page Up Shift Cursor Up

Y 75 Cursor Left Cursor Left Cursor Left

Y 77 Cursor Right Cursor Right Cursor Right

Y 79 Cursor Right + + End CTRL Cursor Right

Y 80 Cursor Down Cursor Down Cursor Down
Y 81 Cursor Down - Page Down Shift Cursor Down
N 82 Insert INS Insert

Y 83 Delete DEL Delete (note 1)

Y 84-93 Shift F1-F10 Shift F1-F10 Shift F1-F10

Y 94-1 03 CTRLF1-F10 CTRLF1-F10 CTRL F1-F10

Y 104-113 ALT F1-F10 ALTF1-F10 ALT F1-F10

133

N 114 CTRL PrtSc

N 115 CTRL Cursor Left

N 116 CTRL Cursor Right

Y 117 Bottom of Window CTRL End ALT Cursor Down

Y 118 Cursor Down + + CTRL Page Down CTRL Cursor Down

Y 119 Top of Window CTRL Home ALT Cursor Up

N 120-131 ALT 1 ,2,3,4,5,6 ALT 1,2,3,4,5,6 ALT 1,2,3,4,5,6

ALT 7,8,9,0,-,= ALT 7,8,9,0,-, = ALT 7,8,9,0,-, =

Y 132 Cursor Up + + CTRL Page Up CTRL Cursor Up

Y 133 Cursor Left + (not required) Shift Cursor Left

Y 134 Cursor Right + (not required) Shift Cursor Right

Y 135 Shift Car. Ret. Shift Car. Ret. Shift Car. Ret.

Y 136 CTRL Car. Ret. CTRL Car. Ret. CTRL Car. Ret.

Y 137 ALT Car. Ret. ALT Car. Ret. ALT Car. Ret.

Y 138 Shift ESC Shift ESC Shift ESC
Y 139 CTRL ESC CTRL ESC CTRL ESC
Y 140 ALT ESC ALT ESC ALT ESC
Y 141 BREAK + Shift BREAK SHIFT BREAK

or CTRL BREAK
Y 142 Pause CTRL N urn Lock Pause

Y 143 Print Screen Shift PrtSc Print Screen

N 144 Insert + Shift INS Shift Insert

N 145 Delete + Shift DEL Shift Delete

N 146 LABEL F1 Label (note 2)

N 147 Shift LABEL Shift F1 Shift Label

N 148 CTRL LABEL CTRL F1 CTRL Label

1) The Delete key should not be confused with the Backspace character (08h), or the Rubout

character (7Fh), which is also sometimes called delete.

2) Microsoft software will respond to F1, Shift F1 and CTRL F1 as a request to display

function key labels. It will additionally respond to LABEL, Shift LABEL, and CTRL LABEL if

the OEM provides this key.

134

Keyboard Support

The BIOS scans the keyboard at interrupt level (triggered by either a keyboard interrupt or a

timer interrupt depending on the particular hardware), and is responsible for handling auto-

repeat (if supported), key encoding, and queuing to support type-ahead.

Just prior to placing the key stroke data into the key stroke queue, the keyboard scan routine

must execute an INT 4Fh. This permits code to be "hooked" into the keyboard scan routine to

take action on specific keys. For example, BASIC will use this hook for detecting BREAK and

for implementing key trapping. The keyboard driver has two BREAK key flags: one used in

BIOS, and the other will be returned to OS. Both flags are set simultaneously by depressing

the BREAK key; the former is cleared right before the BIOS loop including self BREAK-check,

and the latter is returned and cleared when the OS invokes Function 3.

The format of this hook is:

INT 4Fh - Keyboard Queue Hook

Entry: AX = Keyboard character

FLAGS.C =

Exit: FLAGS.C = - the key stroke data (returned in AX) should be put into the queue

FLAGS.C = 1 - the key stroke data should be discarded (i.e., do not put the data

into the queue)

AX = Key stroke data to store in queue

Notes:

1

.

See the section on Character Code Definitions for a discussion of character

codes and their meanings.

2. To simplify queue management, it may be desirable to store all key strokes as

two byte codes, even though the extended character codes are the only true two

byte codes.

3. The recommended size of the key stroke queue is 64 bytes. This will

accommodate 32 two byte key stroke entries if the above recommendation is

followed.

4. If the key stroke queue is full, additional key strokes should be discarded. (This

must be done after the INT 4Fh call, not before it, since the INT 4Fh routine must

see the keys even if the queue is full.

5. It may prove useful for the code hooked into INT 4Fh to be able to modify the key

stroke data. Therefore, the BIOS keyboard scan routine must queue the contents

of AX as returned by the INT 4Fh routine, not the original key stroke data it

passed to the INT 4Fh routine.

135

The following interrupts are used by applications to obtain keyboard status and data from the

BIOS:

INT 50h, Function - Check Key Stroke Queue

Entry: AH = (function code)

Exit: AL = number of key strokes in the keyboard queue (0 through N, where N is the

maximum number of keystrokes the queue can hold. Two byte keystrokes should

be counted as a single keystroke.)

FLAGS.Z=1 if AL=0 (queue is empty)

FLAGS.Z = if AL.NE.O (queue is not empty)

INT 50h, Function 1 - Fetch Key Stroke

Entry: AH = 1 (function code)

Exit: FLAGZ.Z = 1 if no key stroke is available

(In this case AH and AL are undefined)

FLAGZ.Z = if key stroke is available and: AX = Key stroke data

(See the section on Character Code Definitions for details format of the key stroke

data.)

INT 50h, Function 2 - Ctear Keyboard Queue

Entry; AH = 2 (function code)

Exit: No registers specified

This routine discards any data in the key stroke queue.

INT 50h, Function 3 - Check Break Key

Entry: AH = 3 (function code)

Exit: FLAGS.Z= 1 if the BREAK key is not pressed.

FLAGS.Z = if the BREAK key is pressed.

This function is intended as a fast check to see if the break key is pressed.

136

INT 50h, Function 4 - Check Key Stroke

Entry: AH = 4 (function code)

Exit: FLAGS.Z = 1 if no key stroke is available

(in this case AX is undefined)

FLAGS.Z=0 if key stroke is available

AX = keystroke data

This function returns the next character in the keystroke queue, but does not remove it from

the queue. It is intended to allow an application to check what character will be returned by

the next call to function 1. The difference between this function and function 1 is that the

character returned is not removed from the keystroke queue.

INT 50h, Function 5 - Stuff Key Stroke

Entry: AH = 5 (function code)

BX = Key stroke

Exit: AL= Queue full flag

= character was placed in the queue

OFFh = character was not placed in queue because the queue was full

This function is intended to allow an application to place a character code into the keystroke

queue. The character code in BX will be a standard BIOS character code (single byte if

BL<>0, two byte if BL = 0). The specified character should be placed at the end of the queue

If the keyboard queue is full, the character is discarded, and the queue full flag returned.

137

Screen (LCD) Text Support

Since BASIC is the only application needing to read characters from the screen, this capability

will be built into BASIC rather than the BIOS. Therefore, the BIOS does not need to keep a

text buffer containing the ASCII codes of the characters on the screen.

The BIOS may need to maintain a reverse video bit for each character position on the screen.

A bit is set to 1 if the corresponding character position on the screen is in reverse video. A

indicates that the corresponding character is in normal video. The need for the reverse video

bits depends upon the BIOS implementation, and is merely a suggested method. The high

level applications code does not use these bits in any way.

Screen positions are given by a column and row address, with being the leftmost column

and the top row of the display.

The following interrupts support the display of text on the screen:

INT 51 h, Function - Return text size of screen

Entry: AH = (function code)

Exit: AL = Screen redraw flag

DH = highest numbered column

(number of columns on screen)-1

DL = highest numbered row

(number of rows on screen)-1

This function returns various attributes about the text screen. The screen redraw flag in AL

specifies whether the contents of the text screen are preserved when a power off/power on

cycle occurs. If the contents of the screen are preserved across a power cycle, then AL

should be OFFh. If the screen contents are not preserved, AL should be 0. If AL= is

returned, then the application program being run will be told that it needs to redraw its screen.

INT 51 h, Function 1 - Clear Screen

Entry: AH = 1 (function code)

Exit: No registers specified

This routine clears the screen, positions the cursor to the upper left corner, and clears all

reverse video bits. This function does not affect the on/off status of the cursor or affect the

current on/off status of the reverse video. This function also ignores the current video mode

(reverse/normal) and clears the screen so that all pixels are off.

138

INT 51 h, Function 2 - Set Cursor Position

Entry: AH = 2 (function code)

DH = cursor column

DL = cursor row

Exit: No registers specified

INT 51 h, Function 3 - Report Cursor Position

Entry: AH = 3 (function code)

Exit: DH = cursor column

DL = cursor row

INT 51 h, Function 4 - Cursor on

Entry: AH = 4 (function code)

Exit: No registers specified

INT 51 h, Function 5 - Cursor off

Entry: AH = 5 (function code)

Exit: No registers specified

INT 51 h, Function 6 - Enable Line Wrap

Entry: AH = 6 (function code)

Exit: No registers specified

INT 51 h, Function 7 - Disable Line Wrap

Entry: AH = 7 (function code)

Exit: No registers specified

With line wrap enabled, displaying a character in the rightmost column of the display causes

the cursor to advance to the leftmost column of the next line of the display. When this occurs

on the bottom line, the display is scrolled up one line and the cursor is positioned to the

leftmost column of the new blank line on the bottom of the screen.

With line wrap disabled, the cursor is not advanced after displaying a character in the

rightmost column of the display. Consequently, a scroll is not automatically performed after

displaying a character in the rightmost column of the bottom line of the display.

The BIOS intialization sequence should enable line wrap.

139

INT 51 h, Function 8 - Display Character at Cursor Position and Advance Cursor

Entry: AH = 8 (function code)

AL = character code

Exit: DH = cursor column (after advance)

DL = cursor row (after advance)

INT 51 h, Function 9 - Position Cursor, Display Character, and Advance Cursor

Entry: AH = 9 (function code)

AL = character code
DH = cursor column

DL= cursor row

Exit: DH = cursor column (after advance)

DL = cursor row (after advance)

This function has the combined effect of calling the three separate functions to position the

cursor, display a character, and report the cursor position. It should not be coded as a series

of software interrupts however, since the entire purpose of combining these functions is to

improve the speed of the combined operations.

INT 51 h, Function A - Scroll

Entry: AH =A (function code)

AL= Blanking flag

= don't blank the source region

FF = blank the source region

BH = destination column

BL = destination row
CH = column count

CL = row count

DH = source column
DL = source row

Exit: No registers specified

The most common actions performed by the scroll function are to roll the display and move
characters within a given line. It may be desirable to optimize these cases, perhaps taking

advantage of hardware scrolling capabilities. Diagonal scrolling must also be supported, and it

is also possible for the source and destination regions to overlap. This function will never be
called with parameters that would cause the area being scrolled to overlap the edge of the

screen,

The blanking flag indicates whether blanking should be performed on the source region. If the

blanking flag is set, then it is necessary to blank the source region. Only that portion of the

source region which is not overlapped by the destination should be blanked- When blanking,

the current video mode (reverse/normal) is ignored, and the blanking will reset all pixels in the

blanked region.

Note that if they are used, the reverse video bits must also be scrolled when the display is

scrolled.

140

INT 51 h, Function B - Reverse Video of Specified Block

Entry: AH = B (function code)

AL = Video state to set

= Normal Video

1 = Reverse Video

CX = Number of characters

Exit: No registers specified

Starting at the current cursor position, the specified number of characters are set to the

specified video state. If the number of characters specified goes past the end of a line, output

should wrap to the beginning of the next line. If the specified number of characters would

cause the output to go beyond the end of the last line on the screen, the extra characters are

ignored. In other words, wrap to the next line on any line but the last. On the last line, ignore

any extra characters.

After this function is completed, the cursor should be returned to its original location. This

function does not affect the setting of the current reverse video state. This function will never

cause the screen to scroll.

INT 51 h, Function C - Enable Reverse Video

Entry: AH =C (function code)

Exit: No registers specified

INT 51 h, Function D - Disable Reverse Video

Entry: AH = D (function code)

Exit: No registers specified

When reverse video is disabled, BIOS puts the characters on the display in normal video,

clearing the corresponding reverse video bits. When reverse video is enabled, the characters

are put on the display in reverse video with the corresponding reverse video bits set to 1.

The BIOS initialization sequence should disable reverse video.

141

INT 51 h, Function E - Blank Screen Region

Entry: AH = E (function code)

CH = number of columns

CL = number of rows

DH = start column number

DL = start row number

Exit: No registers specified

This function causes a rectangular region on the screen to be blanked. The start column and

row specify the upper left corner of the region to be blanked. The current screen mode

(reverse/normal) is ignored, and the blanked region will be cleared so that all pixels are turned

off. The reverse video attribute bits for the specified region must also be cleared. This function

does not affect the cursor location or the current setting of the reverse video mode.

142

Screen (LCD) Graphics Support

BIOS graphics support is fashioned after the GW-BASIC 2.0 Graphics Interface Specification.

A thorough reading of that document is recommended prior to implementing the BIOS

graphics support described below.

The BIOS maintains a graphics cursor which uniquely addresses a pixel of the display. The

internal representation of the graphics cursor should be chosen by the OEM to optimize the

speed of graphics operations. The only restriction on the internal representation is that it must

not exceed 6 bytes in length.

The BIOS also maintains a graphics attribute which specifies what effect a wet pixel(s) BIOS

call has on the affected pixel(s). (The LCDs being used for Hand-Held computers today

support only two states for a pixel, on or off. Therefore the graphics attribute simply specifies

one of these two states.) As with the graphics cursor, the internal representation of the

graphics attribute should be chosen to optimize the speed of graphics operations. There are

no size restrictions on the internal representation of the graphics attribute since only the

external form is used when passing parameters to and from the BIOS. Because graphic

functions are speed critical routines, they never turn the cursor on or off even if the cursor

disturbs their work. Turning the cursor on or off should be performed before or after invocation

of graphic functions if it is necessary.

Graphics coordinates are specified such that Y runs vertically with being the top row of

pixels on the screen, and X runs horizontally with being the leftmost column of pixels on the

screen.

The following interrupts support graphics on the screen:

INT 52h, Function - Return Screen Graphics Resolution

Entry: AH = (function code)

Exit: CX = highest numbered pixel in X
(number of pixels in X direction)-1

DX = highest numbered pixel in Y
(number of pixels in Y direction)- 1

INT 52h, Function 1 - Map X,Y Coordinates to Graphics Cursor

Entry: AH = 1 (function code)

CX = X coordinate

DX = Y coordinate

Exit: No registers specified

This routine sets the graphics cursor to select the pixel specified by the X and Y coordinates

for subsequent graphics BIOS calls.

143

INT 52h, Function 2 - Move the Graphics Cursor Right One Pixel

Entry: AH = 2 (function code)

Exit: FLAGS.C = - cursor updated

FLAGS.C = 1 - cursor was already at maximum X, therefore it was not changed

INT 52h, Function 3 - Move the Graphics Cursor Left One Pixel

Entry: AH = 3 (function code)

Exit: FLAGS.C = - cursor updated

FLAGS.C = 1 - cursor was already at minimum X (0), therefore it was not changed

INT 52h, Function 4 - Move the Graphics Cursor Down One Pixel

Entry: AH = 4 (function code)

Exit: FLAGS.C = - cursor updated

FLAGS.C = 1 - cursor was already at maximum Y, therefore it was not changed

INT 52h, Function 5 - Move the Graphics Cursor Up One Pixel

Entry: AH = 5 (function code)

Exit: FLAGS.C = - cursor updated

FLAGS.C = 1 - cursor was already at minimum Y (0), therefore it was not changed

INT 52h, Function 6 - Set Graphics Attribute

Entry: AH = 6 (function code)

AL = external representation of attribute

for turning pixels off

1 for turning pixels on

Exit: No registers specified

This routine sets the graphics attribute as specified. It should also set up the internal

representation of the graphics attribute accordingly.

INT 52h, Function 7 - Set Current Pixel to Current Attribute

Entry: AH = 7 (function code)

Exit: No registers specified

This routine sets the pixel addressed by the graphics cursor to the current graphics attribute.

This has the effect of turning off (graphics attribute = 0) or turning on (graphics attribute = 1)

the pixel.

144

INT 52h, Function 8 - Set Multiple Pixels to Current Attribute

Entry: AH =8 (function code)

BX = number of pixels affected

Exit: No registers specified

This routine turns off or on (depending on the current graphics attribute) BX pixels at and to

the right of the current graphics cursor. For example, if BX = 2, the pixel addressed by the

graphics cursor and the pixel immediately to its right are set to the current graphics attribute (0

or 1).

Notes

1. The graphics cursor must be unchanged upon exit from this routine.

2 It is assumed that the caller will never specify a pixel count such that the operation extends

beyond the rightmost pixel of the screen. Therefore this routine need not check for this

condition.

3. It is assumed that the caller will never specify a pixel count of 0. Therefore this routine

need not check for this condition.

4 This routine should be written to handle multiple pixels in an efficient manner. For example,

all affected pixels in a given byte should be handled with a single fetch and store of the

byte from video memory. In fact, if all the bits of a given byte are affected it is not even

necessary to fetch the byte from video memory.

INT 52h, Function 9 - Read Attribute of Current Pixel

Entry: AH = 9 (function code)

EX j t: AL = external attribute of pixel

for pixel off, 1 for pixel on

INT 52h, Function A - Fetch Graphics Cursor

Entry: AH = A (function code;

Exit: BX = word 2 of graphics cursor

CX = word 3 of graphics cursor

DX = word 1 of graphics cursor

145

INT 52h, Function B - Store Graphics Cursor

Entry; AH = B (function code)

BX = word 2 of graphics cursor

CX = word 3 of graphics cursor

DX = word 1 of graphics cursor

Exit: No registers specified

Since the internal representation of the graphics cursor is unknown outside of the BIOS, the

fetch and store graphics cursor routines are not intended to allow the caller to operate on the

cursor. Instead, these routines are provided solely to allow the caller to preserve and later

restore the contents of the graphics cursor.

INT 52h, Function C - Return Aspect Ratio

Entry: AH = C (function code)

Exit: BX = 256 * (aspect ratio)

DX = 256 / (aspect ratio)

The aspect ratio of the screen is defined as the ratio of the Y distance between two vertically

adjacent pixels to the X distance between two horizontally adjacent pixels, where the

distances are measured from the center of the first pixel to the center of the second pixel.

Typically this ratio is less than 1, so a given number of pixels spans a shorter distance in Y
than in X.

The aspect ratio can be used by callers to compensate for unequal X and Y pixel spacing

when drawing graphics on the screen. For example, the CIRCLE statement in GW-BASIC
uses the aspect ratio to draw spatially round circles.

The aspect ratio can be empirically determined as follows:

1 . Turn on a box of pixels of dimension N by N, where N is the minimum of the screen's pixel

resolution in X and Y. (In other words, draw the largest box the screen can accommodate
having the same number of pixels in X and Y.

2. Measure the Y (vertical) dimension of the box.

3. Measure the X (horizontal) dimension of the box.

4. Divide the Y dimension of the box by the X dimension to obtain the aspect ratio of the

screen.

146

INT 52h, Function D - Get Pixels

Entry: AH = D (function code)

Exit: AL= pixel states (see description below)

BL = number of pixels returned

This routine returns a byte in AL representing the state of the pixels at and to the right of the

pixel addressed by the graphics cursor. Bit 7 (MSB) of AL corresponds to the pixel addressed

by the graphics cursor, bit 6 corresponds to the pixel immediately to its right, and so on.

Normally this routine returns 8 pixels so BL contains 8. However, if the right screen edge is

encountered prior to getting 8 pixels, the count in BL is less than 8 and the unused low order

bits of AL are undefined.

Normally this routine leaves the graphics cursor pointing to the first pixel to the right of the last

pixel returned. However, if the last pixel returned is the rightmost pixel of the screen, the

graphics cursor is left pointing to it rather than pointing beyond the right edge of the screen.

This is a speed critical routine, it should be coded accordingly.

INT 52h, Function E - Put Pixels

Entry: AH = E (function code)

AL = pixel data

BH = operation code
- Off

1 - On
2 - XOR
3 - AND
4 - OR

BL = number of pixels to affect

1 through 8, inclusive

Exit: No registers specified

This routine affects the states of BL pixels at and to the right of the graphics cursor.

Operation code performs a logical NOT on the pixel data in AL, and then sets the

appropriate screen pixels accordingly.

Operation code 1 simply sets the appropriate screen pixels to the pixel data contained rn AL.

Operation codes 2, 3, and 4 perform the following steps:

1. Read the current state of the affected pixels from the screen.

2. Perform the specified logical operation on the data obtained in step 1 and the data in AL.

The pixel data in AL is left aligned in the register, bit 7 corresponds to the current cursor

location, bit 6 to the pixel to the right of the current cursor, etc.

3. Set the state of the affected pixels to the result of the togical operation performed in step 2,

147

Upon exit, the graphics cursor points to the pixe! to the right of the last one affected by the

routine. However, if the last pixel affected is the rightmost pixel on the screen, the graphics

cursor is left pointing to it rather than pointing beyond the edge of the screen.

This is a speed critical routine, it should be coded accordingly.

INT 52h, Function F - Set Pixel at Specified X,Y to Specified Attribute

Entry: AH = F (function code)

AL = attribute

0-off

1 - on

CX = X coordinate

DX = Y coordinate

Exit: No registers specified

Upon exit, the graphics cursor points to the pixel specified by the X,Y coordinate pair, and the

graphics attribute is the one that was passed to the routine in AL.

Calling this routine is the simplest way to plot individual points on the screen. It is intended for

use by applications that do not require maximum speed. It may therefore be coded as calls to

the routines that map an X,Y coordinate pair to the graphics cursor, set the graphics attribute,

and set the current pixel to the current attribute.

148

Cassette Support - Unsupported Software Interrupt

The cassette block format is as follows:

<driver-header>< block-type> <block-data> <driver-trailer>

1. The format of the driver-header is specified by the OEM. Typically it includes

synchronization information and the length of the block.

2. The block-type and block-data are supplied by the caller when the block is written to tape.

(See the description of the write block routine below.)

3. The format of the driver-trailer is specified by the OEM. Typically it includes a checksum for

the block.

If cassette hardware is not available, the cassette functions should return the Device Not

Available error code.

The following interrupts support cassette I/O:

INT 53h, Function - Request Cassette Device

Entry: AH = (function code)

Exit: AL= Standard BIOS error codes

This function is called before any other cassette functions. Its purpose is to mark the cassette

unit as being in use.

INT 53h, Function 1 - Initialize Cassette

Entry: AH = 1 (function code)

Exit: AL= Standard BIOS error codes

This function code is called after a successful request has attached the cassette device. It is

called once before any I/O to initialize the cassette.

INT 53h, Function 2 - Turn Off Cassette Motor

Entry: AH = 2 (function code)

Exit: No registers specified

INT 53h, Function 3 - Turn On Cassette Motor

Entry: AH = 3 (function code)

Exit: No registers specified

149

INT 53h, Function 4 - Write Block

Entry: AH = 4 (function code)

AL = block-type

CX = byte count (does not include block-type)

DX- segment address of data buffer

BX = offset address of data buffer

Exit: AL= Standard BIOS error codes

This routine should perform the following steps:

1. Start the motor and delay until the motor is at full speed. (The length of the delay required

depends on the characteristics of the cassette drive. For inexpensive cassette recorders a

delay of one-half second is usually adequate.)

2. Write the OEM specified block-header.

3. Write the bfock-type byte.

4. Write the specified number of bytes from the specified buffer.

5. Write the OEM specified block-trailer.

6. Turn the motor off and return.

INT 53h, Function 5 - Read Block

Entry: AH = 5 (function code)

CX=buffer length

DX = segment address of data buffer

BX = offset address of data buffer

Exit: AL= Standard BIOS error code

AH = block-type (read from tape)

CX = number of bytes of data placed in the buffer

This routine should perform the following steps:

1. Start the motor and delay until the motor is at full speed. (The length of the delay required

depends on the characteristics of the cassette drive. For inexpensive cassette recorders a

delay of one-half second is usually adequate.)

2. Read the OEM specified block-header.

3. Read the block-type byte.

4. Read the data into the buffer, checking for buffer overflow.

5. Read the OEM specified block-trailer, and verify the checksum.

6. Turn the motor off and return.

150

INT 53h, Function 6 - Deactivate Cassette Device

Entry: AH = 6 (function code)

Exit: AL = Standard BIOS error code

This function is called once after all cassette I/O is completed. Its purpose is to perform any

clean-up required after using the cassette, before it is released.

INT 53h, Function 7 - Release Cassette

Entry: AH = 7 (function code)

Exit: AL = Standard BIOS error code

This function will be called after the completion of cassette I/O processing. Its purpose is to

mark the cassette device as being not busy.

151

Calendar, Time of Day Clock, and Alarm Support

The format of the date and time is identical to that used by MS-DOS. Portions of the time

specification that are not supported by the hardware should be ignored by set time calls and

returned as zero by get time calls.

The power on alarm should only be active if the machine power is off. The high level

applications will handle all alarm functions in software whenever the power is on. If a

hardware alarm occurs while the machine is on, it should be ignored. Alarm warm-start feature

works during power-off, however, alarm interruption is ignored during power-on.

The following interrupts support the time of day clock and alarm:

INT 54h, Function - Get Current Date

Entry: AH = (function code)

Exit: AL = day of week (0 = Sun, 1 =Mon, . . ., 6 = Sat)

CX = year (1980 through 2099)

DH = month (1 through 12)

DL=day (1 through 31)

INT 54h, Function 1 - Set Current Date

Entry: AH = 1 (function code)

CX = year (1980 through 2099)

DH- month (1 through 12)

DL = day (1 through 31)

Exit: AL= return code
- no errors

FF - invalid date, operation aborted

INT 54h, Function 2 - Get Current Time

Entry: AH = 2 (function code)

Exit: CH = hours (0 through 23)

CL = minutes (0 through 59)

DH = seconds (0 through 59)

DL = hundredths of seconds (0 through 99)

152

INT 54h, Function 3 - Set Current Time

Entry: AH = 3 (function code)

CH = hours (0 through 23)

CL = minutes (0 through 59)

DH = seconds (0 through 59)

DL- hundredths of seconds (0 through 99)

Exit: AL = return code
- no errors

FF - invalid time, operation aborted

INT 54h, Function 4 - Get Alarm Date

Entry: AH =4 (function code)

Exit: AL=day of week (0 = Sun, 1=Mon 6 = Sat)

CX = year (1980 through 2099)

DH = month (1 through 12)

DL = day (1 through 31)

INT 54h, Function 5 - Set Alarm Date

Entry: AH = 5 (function code)

CX=year (1980 through 2099)

DH = month (1 through 12)

DL = day (1 through 31)

Exit: AL = return code
- no errors

FF - invalid date, operation aborted

INT 54h, Function 6 - Get Alarm Time

Entry: AH = 6 (function code)

Exit: CH = hours (0 through 23)

CL = minutes (0 through 59)

DH = seconds (0 through 59)

DL= hundredths of seconds (0 through 99)

INT 54h, Function 7 - Set Alarm Time

Entry: AH = 7 (function code)

CH = hours (0 through 23)

CL = minutes (0 through 59)

DH = seconds (0 through 59)

DL= hundredths of seconds (0 through 99)

Exit: AL= return code
- no errors

FF - invalid time, operation aborted

153

INT 54h, Function 8 - Enable Alarm

Entry: AH = 8 (function code)

Exit: no registers specified

INT 54h, Function 9 - Disable Alarm

Entry: AH = 9 (function code)

Exit: no registers specified

INT 54h, Function A - Get Timer Resolution

Entry: AH = 0Ah (function code)

Exit: AX = Timer interrupt resolution

This function returns the resolution of the timer interrupt. The number to be returned in AX is

65535/N, where N is the number of interrupts that occur per second.

For example, if timer interrupts occur 18.2 times per second, the number returned in AX would

be 65535/18.2 or 3601.

Real Time Clock: (RTC) with 64-bytes built-in RAM is used as follows:

Offset I/O Address Contents Initial Value

0- 17 Used by RTC itself

18 C012 (Hex) Printer Timeout

500 msec/unit

40 (20 sec.)

19 C013(Hex) Break Sending Period

25 msec/unit

30 (750 msec.)

20 C014(Hex) Reserved

21 C015(Hex) Print Code Translate

0: no translation 1 : translate

(no translation)

22 C016(Hex) Carrier Detect Timeout

500 msec/unit

4 (2 sec.)

23 C017(Hex) Power ON Mode
0: Jump to MS-Works

FFH: Jump to top of Removable Rom

(to MS-Works)

24-63 C018-C03F
(Hex)

User free

154

Sound Support

The following interrupts provide sound support:

INT 55h, Function - Play Tone

Entry: AH = (function code)

CX = frequency in Hertz

DX = duration in 2.5 millisecond increments

Exit: No registers specified

This function should generate the specified tone for the specified duration. If a tone is already

being generated when this function is called, the current tone should be completed before the

next tone is begun. If the user types the break key while sound generation is in progress, the

sound should be stopped and control returned to the calling program.

The Tandy 600 has only one hardware timer (81C55) which is used for both playing tones and

setting the RS232 baud rate. The ROM-BIOS ignores the tone function while using the timer

as a baud rate generator. The tone function is, therefore, only available when the timer is not

used as a baud rate generator.

The tone function can produce the OHz tone (i.e. Pause).

155

Printer Support

The following interrupts support the printer:

INT 56h, Function - Request Printer

Entry: AH = (function code)

Exit: AL = Standard BIOS error code

This function called prior to accessing the printer. Its purpose is to mark the printer device as

in use.

INT 56h, Function 1 - Initialize Printer

Entry: AH = 1 (function code)

Exit: AL= Standard BIOS error code

This function is called once after successfully requesting the printer. Its purpose is to perform

any initialization required before sending an output stream to the printer.

INT 56h, Function 2 - Print Character

Entry: AH = 2 (function code)

AL= character to print

Exit: AL = Standard BIOS error code

INT 56h, Function 3 - Print Screen

Entry: AH = 3 (function code)

Exit: AL= Standard BIOS error code

This function may be implemented as either a graphic print screen if graphic output on the

printer is supported, or as an alpha only print screen if graphic printer output is not supported.

If graphic output is supported, correction for different aspect ratios between LCD screen and

printer may be provided, but is not required.

156

INT 56h, Function 4 - Deactivate Printer

Entry: AH = 4 (function code)

Exit: AL = Standard BIOS error code

This function is called once after a stream of printer output is completed, and before the

printer is released. It is intended to perform any clean-up necessary when releasing the

printer.

INT 56h, Function 5 - Release Printer

Entry: AH = 5 (function code)

Exit: AL= Standard BIOS error code

The purpose of this function is to mark the printer as being not in use.

157

Disk Support

The Disk Support functions have been designed to provide compatibility with MS-DOS style

disks. Several of the terms used in the descriptions of the functions are taken from MS-DOS,

and it is recommended that the BIOS implementor be familiar with the MS-DOS 2.0 Adaptation

Guide-

Several of the disk support function calls refer to a BPB. The BPB used by the HH O/S is

identical to that used by MS-DOS 2.X and described in the MS-DOS 2.0 Adaptation Guide.

Even if the BPB on the boot sector was not the same as one on the BIOS-ROM, the BIOS will

not return an error because the Tandy 600 is capable of reading another logical formatted

disk. The description of the structure of a BPB is repeated here:

WORD Sector size in bytes must be a multiple of 64

BYTE Sectors per allocation unit must be a power of 2 (1 , 2, 4, etc.)

WORD Number of reserved sectors may be

BYTE Number of FATs

WORD Number of directory entries

WORD Total number of sectors includes reserved sectors

BYTE Media descriptor byte must be unique for each unique BPB

WORD Number of sectors occupied by a single FAT

The following interrupts provide the disk support functions:

INT 57h, Function - Request Disk Device

Entry: AH = (function code)

Exit: AL=; Standard BIOS error code

This function will be called before any disk requests are made. Its purpose is to mark the disk

device as in use.

158

INT 57h, Function 1 - Initialize Disk Device

Entry: AH = 1 (function code)

Exit: AL = Standard BIOS error code
DS:SI = Address of BPB pointer array

CL = Number of disks

This function initializes the disk device. It is called before the first access to the disk. It is also

used as a disk reset function when an error occurs.

The BPB pointer array is an array of FAR pointers, one for each supported disk drive. The
size of the scratch buffer passed to the Build BPB function call is determined from the BPB's

passed in this call. The buffer size will be taken as the size of the largest sector size returned

from this call.

INT 57h, Function 2 - Build BPB

Entry: AH = 2 (function code)

AL = Drive number (starting with 0)

DS:SI = Address of scratch buffer

CL = Media descriptor byte

Exit: AL = Standard BIOS error code
DS:SI Pointer to new BPB

The scratch buffer is available for whatever use the BIOS may require. On entry, it is not

initialized. The size of the buffer is determined from the default BPB's returned from function

1, and will be as large as the largest sector size specified.

INT 57h, Function 3 - Read Sector(s)

Entry: AH = 3 (function code)

AL = drive number (starting with 0)

BL = Media descriptor byte

CX = number of sectors to read

DX = starting logical sector number
DS:SI = starting memory address

Exit: AL = Standard BIOS error code

12 - data error

14 - write protect (does not apply to read)

1

5

- drive not ready

1

6

- seek error

17 - sector not found

18 - write fault (does not apply to read)

OFFh - other error

NOTE: Read/Write Sector(s) Functions: The FDD circuit is automatically powered off

after 2 or 3 seconds of non-operation. The Read Sector(s) and Write Sector(s)

functions turn on the power of FDD circuit and its motor when their power has

been turned off automatically.

159

INT 57h, Function 4 - Write Sector(s)

Entry: AH = 4 (function code)

AL = drive number (starting with 0)

BL= Media descriptor byte

CX = number of sectors to write

DX = starling logical sector number

DS:SI = starting memory address

FLAGS.C- verify flag

- no verify

t - verify after write

Exit: AL= Standard BIOS error code

(See function 2 for pertinent error codes)

INT 57h, Function 5 - Get Format Table Size

Entry: AH = 5 (function code)

Exit: DX = Size of format table

Many disk controllers require a data table which contains formatting information, (such as

sector ID fields). This call should return the size of the buffer needed to build this table. The

specified amount of memory will be allocated, and the address of this table passed to the

Format Disk function.

INT 57h, Function 6 - Initialize Disk Formatting

Entry: AH = 6 (function code)

AL= Drive Number (starting with 0)

DS:SI = Sector size scratch buffer

ES:DI = Pointer to format parameter string

Exit: AL= Standard BIOS error code

BL=FAT ID byte

BH = Change disk flag

= don't change disk

0FFh = change disk

DS:SI = Pointer to BPB

160

This function is called once at the beginning of formatting. It specifies the location of a sector

buffer for use in transferring a boot sector to the newly formatted disk. The data placed into

this sector buffer will be provided in the Format Disk function call for placement on the

formatted disk.

The parameter string specified in ES:DI is a zero terminated ASCII character string. It is

specified by the user from within the FORMAT application program. The actual contents of this

string is OEM specified, and may have any meaning desired. Microsoft does not make use of

this string in any way. The BIOS-ROM allows the foflowing two parameters:

V = verify option: Verify formatted disk. The formatting takes longer with the

verify option, however, it gives higher reliability.

B = Copy boot sector option: Usually only the BPB table is copied into the boot sector of a

formatted disk, however, all data of the boot sector is copied if

this option is specified. Change disk flag:0FFh is returned if this

option is specified.

The change disk flag on exit specifies whether to prompt the user to place a new disk in the

drive before formatting is begun. If this flag is set on return from the function, the user will be

prompted to change the disk before function 7 is called.

The scratch buffer specified in DS:SI will be a sector sized block of memory which may be

used in any way. The size of this block is determined from the BPB array returned via

Function 1 (Initialize Disk Device) and will be the same size as the largest sector size in the

BPB array. This sector may be used in any way desired.

INT 57h, Function 7 - Format Disk

Entry: AH = 7 (function code)

AL = drive number (starting with 0)

DS:SI = Boot sector buffer

ES:DI - Format table buffer

Exit: AL = Standard BIOS error code

BX = Bad sector number
CX = Number of consecutive bad sectors

This routine is called to format the disk. If a bad sector or group of bad sectors is

encountered, this function should return with the bad sector number and the count of

consecutive bad sectors. This information is used in building a list of bad sectors in the FAT.

This function will be called repeatedly until a final return occurs in which CX = (no bad

sectors) is reported. At that time, it is assumed that the entire disk has been formatted.

The scratch sector buffer passed in DS:SI is the same buffer as was passed in Function 6

(Initialize for Disk Formatting).

161

INT 57h, Function 8 - Media Check

Entry AH = 9 (function code)

AL = drive number
CL= media descriptor byte

Exit: AL = media status

-1 = media has been changed

= don't know
1 = media has not been changed

The Media Check function always returns which means the Tandy 600 does not know

whether the media has been changed or not. Therefore, the Build BPB function is called

frequently. However, this is not a big overhead cost because the ROM-BIOS only returns the

fixed BPB without any FDD access. This means that the Tandy 600 only can access FDD

formatted media following one of the two standard MS-DOS formats. The other standard MS-

DOS format is not available. However, the disk can be accessed by other MS-DOS machines

(i.e. compatibility must be resolved by the desk-top MS-DOS machine — not by the Tandy

600).

The disk format is one of the two MS-DOS standard formats.

Number of Tracks: 80

Sectors per Tracks: 9

Bytes per Sector: 512

Reserved sectors: 1

Number of FATs: 2

Sectors per FAT: 2

Total DIR entries: 112

Sectors per DIR: 7

Sectors per allocation unit: 2

Media Descriptor Byte: F8

Physical Format: IBM format

162

Boot Sector Format

B.P.B.

Optional

B.P.B.

3-bytes JUMP Code to BOOTER

8-bytes OEM name and version

"Tandy 600"

W: Bytes per Sector: 512

B: Sectors per allocation unit:

W: Reserved Sectors:

B; Number of FATs:

W: Number of root DIR entries: 112

W: Total number of Sectors

includes reserved sectors 720

B: Media descriptor:

W
W
W
W

Number of Sectors per FAT

F8 hex

2

Sectors per Track:

Number of Head:

Number of hidden Sectors:

BOOTER CODE

If the JUMP instruction is not on here,

the BIOS assumes that this is not its

original diskette.

INT 57h, Function 9 - Deactivate Disk Device

Entry:

Exit:

AH = 9 (function code)

AL = Standard BIOS error code

The Tandy 600 supports only one MS-

DOS standard disk format. Another MS-

DOS machine can read/write to this

diskette because it has BPB on the boot

sector.

If there are two NOP (90 hex) codes

instead of BOOTER code here, the BIOS

assumes that this diskette is not an

uncooperative system diskette.

This function is called once after access to the disk device is completed. It should perform any

clean up necessary before the disk device is released.

163

INT 57h, Function A - Release Disk Device

Entry: AH = A (function code)

Exit: AL= Standard BIOS error code

This function is called when access to a disk drive is to be terminated. The device should be
marked as not busy. This function will always turn off the power to the FDD circuit and its

motor.

164

Power On

When the power is turned on, the BIOS must determine the type of start up desired and

perform as follows:

1. Cold start - This is indicated by the user holding down a unique, OEM specified key

combination while turning the power on. (The key combination should be chosen such that

it will not occur accidentally, since cold starting destroys any information stored in the

machine.) The BIOS executes its cold start initialization sequence and then transfers

control to the entry point of Microsoft's ROM code as discussed below.

2. Warm start resume - This is indicated by no keys being down when the power switch is

turned on. In this case, the BIOS executes any warm start code it needs to and then

transfers control to the entry point of Microsoft's ROM code as discussed below.

3. Warm start break - This is indicated by the user holding down a unique, OEM specified key

or key combination (Microsoft recommends the Break key be used for this) while turning

the power on. The BIOS executes any warm start code it needs to and then transfers

control to the entry point of Microsoft's ROM code as discussed below. This is intended to

be a reset function which will always cause a return to the top level menu. If the machine

hangs for any reason, the user can use this function to regain control. See further

discussion of Warm Start Break below.

4. Warm start alarm - This occurs when the wake up alarm turns on the power. This always

causes a warm start, regardless of what, if any, keys may be depressed at the time. (This

prevents accidental cold starts and boot attempts if the machine automatically powers up
while an unsuspecting user is "playing" with the keyboard.) In this case, the BIOS executes

any warm start code it needs to and then transfers control to the entry point of Microsoft's

ROM code as discussed below.

5. Warm start auto answer - This occurs when the modem auto answer feature turns on the

power. This always causes a warm start, regardless of what, if any, keys may be

depressed at the time. (This prevents accidental cold starts and boot attempts if the

machine automatically powers up while an unsuspecting user is "playing" with the

keyboard.) In this case, the BIOS executes any warm start code it needs to and then

transfers control to the entry point of Microsoft's ROM code as discussed below.

The entry point of Microsoft's ROM code is the lowest ROM location occupied by Microsoft

code in a minimum configuration of the machine. When the BIOS jumps to this location the

registers must be set up as follows:

AL = type of start up
- cold start

1 - warm start resume
2 - warm start break

3 - warm start alarm

4 - warm start auto answer

DS:BX - Address of ROM pointer table

CX = Number of paragraphs of RAM available to Microsoft's ROM code

DX = Base paragraph address of available RAM

165

The memory information in CX and DX is used by the internal operating system to initialize

the file system during cold start.

The address in DS:BX points to a table of segment addresses which give the base addresses

of each separate contiguous ROM region in the system. On cold start, this is used to build the

initial file directory. On warm starts, this is used to detect removable ROM*s which have been

removed, or have different rom's installed. Note, that if during a warm start resume, the O/S

detects that there are different ROM's present in the machine than when the power was

turned off, the O/S will force a warm start break operation to occur.

The structure of this table is as follows:

count

region 1

Number of ROM regions defined

Segment address of the first

ROM region

region n - Segment address of the last ROM region

Power On Operation

Power-on mode Key combination Value of Reg. AL

Cold Start LABEL + ALT + BKSP 4- power-on AL =
Warm Start Resume no-key -f power-on AL=1
Warm Start Break SHIFT + PAUSE + power-on AL = 2

Warm Start Alarm (Auto Power On) AL=3
Warm Start Auto-Answer (Auto Power On) AL = 4

Boot Uncooperative System LABEL + ALT + ESC + power-on AL = 5

(Hold key after power-on, and release it a little bit later)

The feature of the Boot Uncooperative System loads the boot sector data into the highest 512

bytes of the standard RAM memory and transfers control to it. Usually, the Tandy 600's

diskette does not include any booter and uncooperative system program.

The ROM-BIOS transfers control with CLI (disable INT) state. Therefore, the STI (enable INT)

should be done after control is transferred.

166

Resetting Operation

Key combination at Reset: You can use a RESET switch on the left side of Tandy 600 as /

follows.

Hold LABEL + ALT + BKSP and Push RESET: Cold-Start

Hold no keys and Push RESET: Warm-Start break

Hold SHIFT + PAUSE and Push RESET: Warm-Start break

Hold LABEL + ALT + ESC and Push RESET: Load unco-op sys.

(Hold keys after pushing RESET, and release them a little bit later.)

NOTE: The resume information used at the warm-start resume is stored after NMI
interrupt, i.e. power-off. Therefore, you cannot cause a warm-start resume by

using the reset-switch, because of the lack of resume information. If you push

only the RESET switch, the Tandy 600 begins warm start break.

Further Considerations Regarding Warm Start Break

Within the O/S, there are critical regions of code that must be allowed to complete once they

are begun. These regions include file management operations that cause memory files to

move, and database functions that modify the contents of a database file. If one of these

regions were entered, but not allowed to complete, the in-memory file system would be

destroyed, or a database file would be corrupted. Some of these critical code regions can take

sufficiently long to execute, that it is not reasonable to turn interrupts off while executing them.

Also, if power off requests occur via NMI, it would not be possible to prevent one from

occurring. Because these critical regions of code can be interrupted by a power off request, it

is essential that they complete when the power is restored.

167

This is not a problem if a Warm Start Resume is performed when the power is restored,

because the warm start resume returns to whatever was executing when the power off

occurred. However, as warm start break is not intended to return to the interrupted process,

but break out if it and restart the Top Level program, a potential problem could occur in doing

a warm start break. The following discussion describes what happens during a warm start

break when one of the critical regions of code in the O/S was interrupted:

1 . When a user program calls an O/S function, the O/S pops the user's return address off of

the user's stack and saves it rn a pair of local variables. This is done so that the segment

portion of the return address can be kept correct if the program is running from RAM and

the execution of the system call causes the file containing the program code to move.

The O/S then switches to its own stack and begins executing the function call.

When the O/S enters a critical region of code that must complete, it sets a flag that will cause

Warm Start Break to resume that system call before the warm start break occurs.

O/S stack

O/S return

address

O/S is executing critical region of code.

Power off hardware interrupt occurs

2. The hardware interrupt transfers control to the BIOS, which switches to its own interrupt

handler stack.

BIOS stack

BIOS Return

address

The BIOS performs whatever actions are necessary, and then

performs an INT 4Eh.

3. The INT 4Eh transfers control to the O/S Power Off Hook, which saves the machine state

so that it can be restored during Warm Start Resume.

O/S power

off stack

O/S Return

address

The O/S saves the address of the BIOS power off stack, switches to

its own power off stack, and pushes all of the registers. It saves the

location of the stack pointer in its own power off stack, and then

performs an INT 58h, function 1 to tell the BIOS to turn the power

off.

168

4. When the power is turned back on, and the BIOS determines that a Warm Start Break is to

be performed, it transfers control to the O/S entry point with AL = 2 to indicate that a Warm
Start Break should occur.

5. The O/S tests the flag and determines that a critical region of O/S code was being

executed. The O/S patches the variables that contain the return address of the application

program that originally called the O/S function, so that when the O/S call completes and
performs a return, it will return to the Warm Start Break code instead of the application

program. The O/S then transfers to the Warm Start Resume routine which resumes
execution of whatever was interrupted by the power off request.

O/S power
off stack

O/S Return

address

The O/S switches to its power off stack, and restores all of the

registers. It then switches back to the stack that was in effect when
the O/S power off hook was entered, and performs an I RET to return

control to whoever executed the INT 4Eh instruction.

6. The IRET will return control to the BIOS power off interrupt handler. This handler must then

restore the stack that was in effect when it was entered and return to the interrupted

process.

BIOS Power The BIOS switches back to the O/S stack that was in effect when the

off stack power off request occurred, and performs an IRET to return control

to whoever was executing when the hardware power off interrupt

occurred.

7. The IRET will return control to the interrupted O/S function which was executing the critical

region of code.

O/S stack
The interrupted O/S call resumes execution and completes. It then

pushes the patched return address onto the stack and performs a

FAR return. The will transfer control back into the O/S Warm Start

Break code.

8. The O/S warm start break code will then perform a normal warm start break. It will

reinitialize everything except the RAM file system, and build a new directory for whatever

ROM's are present in the machine. It will then perform an INT 58h, function 1 to tell the

BIOS that its Warm Start Break processing is finished, and that the BIOS should complete

its initialization. After executing the INT 58h, function 1 , the O/S will then execute the

System Manager program which will draw the top level menu.

The most important point of this discussion is that when the power off request interrupted a

critical region of the O/S, the O/S Warm Start Break code will perform a Warm Start Resume
to allow the interrupted O/S function to complete before doing the Warm Start Break. If any of

the BIOS's Warm Start Break initialization would cause a Warm Start Resume to not be

performed properly, then the Warm Start Break will fail in this case. The BIOS must not

initialize anything internally that would cause a Warm Start Resume to fail until it receives the

INT 58h, function 1 request.

169

General System Control Functions

The following functions are used for controlling various global system functions.

INT 4Eh - Power Low/Off Hook

Entry: No registers specified

Exit: No registers specified

When a power low or power off interrupt occurs, if the BIOS is in the middle of an I/O

operation, it should complete the operation, and then execute an INT 4Eh. At any other time,

the INT 4Eh should be executed immediately. The INT 4Eh code will save the necessary

machine state to allow resumption when the power is restored. At some later time, when the

power has been restored, the machine state will be restored, and the INT 4Eh hook will return

to jts caller. At that time, the CPU state will be the same as when the INT 4Eh hook was
entered.

When the Microsoft INT 4Eh code completes it executes an INT 58h Function 0, which causes

the BIOS to turn off the power. When the power is restored, and a warm start resume is

performed, the INT 4Eh hook will return to its caller with the CPU state unmodified. If a cold

start or warm start break is performed when the power is restored, the INT 4Eh hook will not

return to the caller, except in the case described above where a critical region of code in the

O/S was being executed.

The HH O/S power off hook routine is not re-entrant. The first thing this routine does on entry

is to set the INT 4Eh vector to point to a dummy IRET. The HH O/S power on code resets this

vector to point back to the proper INT 4Eh power off handler just before it transfers control to

the appropriate application program for the type of restart being performed, This reduces the

chances of re-entrancy problems if NMI's are used for power off requests.

NOTE: When the Power low/off interrupt occurs during the disk read/write operation, the

invocation of Power lowoff hook is put off until the end of a read-'write operation

to keep the media from being damaged.

A previous FDD operation cannot be resumed even if its power is restored, because a disk

may be destroyed by resuming a write operation when another disk has been inserted during

power-off.

When the Power low/off interrupt occurs during communication via RS232 or a MODEM, the

invocation of Power low/off hook fs done immediately. When its power is turned on again,

however, the previous RS232 and MODEM configurations and connection of the telephone

line are fulfy recovered.

When the Power low/off interrupt occurs during printing, the invocation of Power low/off hook

is done immediately. When its power is turned on again, however, printing can be resumed.

170

INT 58h, Function - Power Off

Entry: AH = (function code)

Exit: Does not return

This function causes the main power to the CPU to be shut off. It will be called by the Power

low/off hook (INT 4Eh) as part of the normal power off sequence. It is also called by the

Microsoft code to turn the power off if the machine has been idle for a certain length of time,

or if the user explicitly turns the power off through software. It does not return. When power is

restored, either via the power switch or some automatic mechanism (such as the alarm),

control is transferred to the Microsoft code as described in the Power On section of this

document.

171

INT 58h, Function 1 - System Re-Initialization

Entry: AH = 1 (function code)

Exit: none

This function is called during a warm start resume, warm start alarm, or warm start auto-

answer, if it is determined that it is not possible to resume whatever was running when the

power was shut off. In this case, a warm start break is performed. This function will be called

to inform the BIOS that a warm start break is being performed, and that the BIOS should do

any initialization that it needs to for a warm start break.

This function is also called when the O/S has completed its Warm Start Break processing, and

is ready to execute the System Manager program. See the above discussion of Warm Start

Break.

172

Interval Timer

When the BIOS receives an interval timer interrupt it must execute an INT 4Dh sometime
during the interrupt routine.

INT 4Dh - Interval Timer Hook

Entry: No registers specified

Exit: No registers specified

The ROM-BIOS gives interrupt every 31.25 msecs.

173

Communications/Modem Support

The RS-232 receiver is interrupt driven. The BIOS handles the receiver interrupts and checks

for error conditions. If an error is detected within the interrupt service routine, the error code

must be saved so that it can be returned as part of the exit conditions for the next call to INT

59h, functions 8 - C. Just prior \o placing the data into the queue, the BIOS must execute an

INT 4Ch. This allows code to be hooked into the receiver interrupt routine for purposes of data

filtering and event trapping.

INT 4Ah - Ring Detect Hook

Entry: No registers specified

Exit: No registers specified

This interrupt should be invoked when an incoming call is detected on the telephone line.

INT 4Ch - Serial Receiver Queue Hook

Entry: AL = Character Received

AH = Serial device the character came from

FLAGS.C =

Exit: FLAGS.C = - the character (in AL) should be put into the queue

FLAGS. C = 1 - the character should be discarded (i.e., do not put the character

into the queue)

AL = Character to put in queue

There must be at least one serial I/O port, although there may be more if desired. Function

OFh is used to select which serial port is to become the active port. After a call to function

OFh, the selected port will become the port acted upon by function calls 07h - OEh.

The following interrupts support the serial I/O ports, modem, and telephone dialing:

174.

INT 59h, Function - Disconnect Serial Device from Modem

Entry: AH = (function code)

Exit: No registers specified

INT 59h, Function 1 - Connect Serial Device to Modem

Entry: AH = 1 (function code)

AL = Serial port number

Exit: AL = Standard BIOS error code

The serial port number parameter in AL specifies to which serial port the modem is to be

attached. If it is not possible to attach the modem to the requested port, then an error

indication should be returned in AL.

It is acceptable to return an error indication in AL if the serial port requested is not configured

correctly to allow modem communications to occur (for example: if the baud rate is set too

high).

INT 59h, Function 2 - Disconnect Telephone Line

Entry: AH = 2 (function code)

Exit: No registers specified

This function causes the telephone line to go on hook, and terminate the telephone call.

INT 59h, Function 3 - Connect Telephone Line

Entry: AH = 3 (function code)

BX = Device to connect

Exit: AL = Standard BIOS error code

This function call takes the telephone line off hook, and connects an internal device to the line

If the line is already off hook, then it should remain so with no disruption of the call. The

following device codes can be specified in BX:

= Telephone Dialer

1 = Modem

2 = Voice Handset

In some hardware configurations, some of these devices may be redundant. Connecting a

device implies disconnecting any other device which may be connected.

175

INT 59h, Function 4 - Select Pulse Dialing

Entry: AH = 4 (function code)

AL= dialing rate (Onslow, 1 =fast)

Exit; No registers specified

If the hardware does not support variable dialing rates for pulse dialing, the parameter in AL

can be ignored.

INT 59h, Function 5 - Select Tone Dialing

Entry: AH = 5 (function code)

AL = dialing rate (0 = siow, 1 =fast)

Exit: No registers specified

If the hardware does not support variable dialing rates for tone dialing, the parameter in AL

can be ignored.

INT 59h, Function 6 - Dial Telephone Number

Entry: AH = 6 (function code)

AL= length of dial string

DX = segment address of dial string

BX = offset address of dial string

Exit: AL= Standard BIOS error code

If an error occurs, DX:BX points to the illegal character in the dial string.

The dial string is ASCII encoded. The following characters are supported:

Digits through 9 - dial the number.

and * - if tone dialing, dial the tone

if pulse dialing give error

P - switch to pulse dialing

T - switch to tone dialing

+ - delay 1 second before dialing the next digit

All other characters are illegal and cause an error to be returned.

176

INT 59h, Function 7 - Configure Serial Device

Entry: AH = 7 (function code)

AL = Configuration parameters

bits 0-1 - number of data bits

00 = 5

01 = 6
10 = 7
11=8

bits 2-3 - number of stop bits

00 = 1

01 =1.5
10 = 2
11 = not allowed

bits 4-6 - parity selection

000 = none

001 = ignore

010 = even
011 = odd

100 = mark

101 = space

bit 7 - XON//XOFF flag

= XON/XOFF disabled

1 = XON/XOFF enabled

BH = XON character

BL=XOFF character

CX = baud rate/100

(except 110 baud, which is specified by CX = 0)

Exit: FLAGS.C = return code
- no errors

1 - illegal configuration parameter(s)

INT 59h, Function 8 - Return Receiver Status

Entry: AH =8 (function code)

Exit: AL = Standard BIOS error code

CX = number of bytes of free space in queue

DX = number of bytes in queue

INT 59h, Function 9 - Fetch Receiver Data

Entry: AH =9 (function code

Exit: AL= Standard BIOS error code

FLAGS.Z=0 - data available (data is in AL)

1 - no data available

AH = data byte (if FLAGS.Z = 0)

177

INT 59h, Function A - Transmit Data

Entry: AH = A (function code)

AL = data to transmit

Exit; AL= Standard BIOS error code

It is recommended that a timeout be associated with the transmitter for failsafe reasons. If the

transmitter does not become ready to accept the character within the timeout period, then an

error should be returned. The recommended timeout period is 250 msec.

INT 59h, Function B - Transmit Break

Entry; AH = B (function code)

Exit: AL= Standard BIOS error code

INT 59h, Function C - Configure Modem

Entry: AH = C (function code)

CH = data rate

1 =300 baud
3 = 1 200 baud

CL = mode
= originate

0FFh = answer

Exit: AL= Standard BIOS error code

The data rate parameter specified in CH specifies the encoding method to use.

Note: For all of the above routines, when an error is returned the BIOS must clear its

error status so subsequent calls will only return an error if a new error has

occurred.

INT 59h, Function D - Set Serial Control Lines

Entry: AH = D (function code)

AL = State to set control lines

Bit - RTS
1 -DTR

2-7 - reserved for future use

Exit: No registers specified

This function is used to set the serial handshaking lines to a specified state. A zero in a bit

position means to set the corresponding control line to a spacing (0) state, a one bit means to

set the corresponding control line to the marking (1) state.

178

INT 59h, Function E - Get Serial Device Control Status

Entry: AH = E (function code)

Exit: AL = State of control lines

Bit - CTS
1 -DSR
2 -CD

3-7 - reserved for future use

This function is used to test the state of the serial handshaking lines.

INT 59h, Function F - Select Active Serial Device

Entry: AH = F (function code)

AL = Device number to select

Exit: AL= Standard BIOS error code

This function specifies which serial device is active. The functions for configuring, reading from

and writing to serial device affect the active port.

INT 59h, Function 10h - Request Serial Device

Entry: AH = 10h (function code)

AL = Device number to attach

Exit: AL= Standard BIOS error code

This function will be called before accessing a serial device. It does not select the device, but

marks it as being in use. Attempting to select a serial device via function OFh before attaching

it via this function is an error.

INT 59h, Function 11 h - Release Serial Device

Entry: AH = 1 1 h (function code)

AL= Device number to release

Exit: AL= Standard BIOS error code

This function code is called after an application is finished using a serial device. This function

marks the specified device as not in use. This call does not affect which serial device is

currently selected.

179

Bar Code Reader Support — Unsupported Software Interrupt

The data returned by the read block function should be fully decoded. There are a number of

encoding schemes used with bar code readers, and the one expected to be the most

common, or standard, for the particular machine should be implemented. Different encoding

schemes can be supported by supplying additional bar code drivers which the user may install

as needed.

If bar code reader hardware is not available, the bar code reader functions should return the

Device Not Available error code when called.

The following interrupts support bar code reader input;

INT 5Ah, Function - Request Bar Code Reader

Entry: AH = (fu notion code)

Exit: AL = Standard BIOS error code

This routine will be called before any access to the bar code reader. Its purpose is to mark the

bar code reader as in use.

INT 5Ah, Function 1 - Initialize Bar Code Reader

Entry: AH = 1 (function code)

Exit: AL = Standard BIOS error code

This function is called before attempting to read bar code data. It should perform any

initialization necessary to prepare the bar code reader to receive data.

INT 5Ah, Function 2 - Read Block

Entry: AH =2 (function code
CX = buffer length

DX = segment address of data buffer

BX = offset address of data buffer

Exit: AL= Standard BIOS error code

CX = number of bytes of data placed in the buffer

This function should read a block of bar code data and place it in the specified buffer. A count

of the number of bytes transferred should be returned in CX.

180

INT 5Ah, Function 3 - Turn off Bar Code Reader

Entry: AH = 3 (function code)

Exit: AL = Standard BIOS error code

This function will be called to indicate that access to the bar code reader is complete. This

function should perform any necessary clean up.

INT 5Ah, Function 4 - Release Bar Code Reader

Entry: AH = 4 (function code)

Exit: AL= Standard BIOS error code

This routine will be called at the end of bar code reader access. Its purpose is to mark the bar

code reader as not in use.

181

Touch Panel Support— Unsupported Software Interrupt

The touch panel is considered to be an interrupt driven device. It should be scanned for a

change of state at the same time that the keyboard is being scanned.

The touch panel is assumed to have a resolution equal to the size of one character on the

LCD display. Touch panel coordinates are given as row and column, which corresponds to the

character location on the LCD which is being touched.

It is recommended that a touch cursor be supported which highlights the location currently

being touched to give the user a positive indication of the selected location on the screen.

This cursor must be removed from the display when the touch panel is not being touched.

A touch panel hook is specified. This hook should be called by the BIOS whenever it has been

discovered that the touch state of the touch panel has changed. A change in touch state

occurs when the touch panel goes from 'not being touched' to 'being touched', or from 'being

touched' to 'not being touched'.

If a touch pannel is not supported by the hardware, the following values should be returned:

AL =
BL =

INT 5Bh - Touch Panel Hook

Entry: BL = Current touch state

= Not touched

0FFh = Touched

DH = Column at which state change occurred

DL = Row at which state change occurred

Exit: No registers specified

INT 5Bh, Function - Touch Panel Status

Entry: AH =0 (function code)

Exit: AL = State change flag

= No change since last call

0FFh = State has changed since last call

BL = Current state

= Touch panel is not currently being touched

0FFh=^ Touch panel is currently being touched

DH = Column at which state changed (only if AL = OFFh)

DL = Row at which state changed (only if AL^OFFH)

This function is called to determine if the state of the touch panel has changed. The flag in AL
indicates if the touched/not touched state has changed since the last time this function was
called. If the flag in AL indicates that the state has changed, then DH-DL should contain the

Column-Row at which that state change occurred. If a state change has not occurred, then

DH-DL are undefined. In all cases, BL indicates the current touch state of the touch panel.

182

INT 5Bh, Function 1 - Touch Panel Location

Entry: AH = 1 (function code)

Exit: BL = Current state

= Touch panel is not currently being touched

0FFh = Touch panel is currently being touched

DH -Column
DL^Row

This function is called to determine the current state of the touch panel. The flag in BL

indicates if the touch panel is currently being touched. If the panel is being touched, then DH-

DL should contain the Column-Row that are currently being touched. If the panel is not

currently being touched, then DH-DL are undefined.

INT 5Bh, Function 2 - Disable Touch Panel

Entry: AH = 2 (function code)

Exit: No registers specified

After this function is called, the BIOS no longer needs to scan the touch panel at interrupt

level. The touch panel can still be polled via functions and 1. While the touch panel is

disabled, the touch panel cursor should also be disabled.

INT 5Bh, Function 3 - Enable Touch Panel

Entry: AH = 3 (function code)

Exit: No registers specified

After this function is called, the BIOS should begin scanning the touch panel at interrupt level.

The touch panel cursor should also return to the enabled/disabled state that it had prior to the

last call to function 2.

INT 5Bh, Function 4 - Enable Touch Cursor

Entry: AH =4 (function code)

Exit: No registers specified

This function is called to enable the display of the touch panel cursor. The touch cursor should

be displayed at the current touch position, and should be removed when the touch panel is no

longer being touched.

183

INT 5Bh, Function 5 - Disable Touch Cursor

Entry: AH = 5 (function code)

Exit: No registers specified

This function disables the touch panel cursor so that it is not displayed when the touch panel

is being touched. If a touch panel cursor is being displayed when this function is called, it

must be removed from the screen.

BIOS Special Extended Functions

Following functions are provided for installable printer drivers:

INT 71 h, Function - Clear BIOS BREAK Flag

Entry: none

Exit: none

INT 71 h, Function 1 - Check BIOS BREAK Flag

Entry: none

Exit: [CF] = 1 - BREAK
= - not BREAK

INT 71 h, Function 2 - Get VRAM Display Start Address

Entry: none

Exit: DX - start address

184

APPENDICES

Appendix A

SUMMATION OF O/S FUNCTIONS

Special Function Keys and Pop-ups

Calculator (Control F2)

From ail applications run pop-up Calc under the following conditions:

a. Normal operating environment;

b. Low and memory conditions;

c. While in EDIT mode.

From System Manager perform a RUN on CALC. By RUNNING Calc it is possible to pop up

Calc from Calc.

Cold boot the computer and then run FILE on ENVIRON. SYS. (System Environment file).

While you are doing this, pop up Calc and store a value in memory.

Alarm (Control F3)

From all applications run pop-up Alarm under the following conditions:

a. Normal operating environment;

b. Low and memory conditions;

c. While in EDIT mode.

From System Manager perform a RUN on Alarm. By RUNNING Alarm it is possible to pop up

Alarm from Alarm.

Set an alarm to go off with Calendar then quit Calendar. Wait for the Alarm to go off then start

Calendar back up. Pop up alarm and change the Start time and/or the Reminder time. Quit

Alarm to return to Calendar, the changes made to the Start time and/or Reminder time should

be reflected on the screen.

Set an alarm to go off with Calendar then quit Calendar. Wait for the Alarm to go off then start

File on CALENDAR.CAL Pop up alarm and change the Start time and/or the Reminder time.

Quit Alarm to return to File, the changes made to the Start time and/or Reminder time should

be reflected on the screen.

185

User Defined Pop-ups (Control F4 - F8)

Notes on User defined pop-ups:

a. It is possible to make any valid application in memory a pop-up.

b. User definable pop-up keys are from F4 to F8.

c. By making certain applications pop-ups it forces others to contend with file sharing.

One such example would be to make Calendar a pop-up, RUN Alarm then Pop up

Calendar and modify the data that Alarm had displayed. Situations like this can

cause nasty problems.

d. All the data needed to configure pop-ups is kept in the System Environment file

(ENVIRON .SYS).

e. Remember, some pop-ups need extra memory to run so if there is a Low or

system memory condition in the system the pop-up may not be invoked.

Turn CALENDAR into a pop-up:

a. Run File on the System Environment file (EN VI RON. SYS).

b. Move to the NEW record in the NAME field and type the string $$FK5.

c. Move over to the TEXT field in the same row and type CALENDAR.

d. Push the enter key then Quit FILE. Wait for the System Manager to display.

e. Push the Warm Start Break button.

f. Now Push the Control F1 key to get a display of the available Pop-ups. The 5 should

have the word Calendar above it.

g. Push Control F5. If the above steps were done properly, Control F5 should pop up

Calendar.

h. Repeat the above steps using different Function keys (valid keys are from 4-8) and

application.

Run Previous (Control F9)

Run previous between the same application.

a. Start an application on a file then Quit.

b. Start the same application on another file then perform a Run previous.

c. Perform run previous 64 times. Each time run previous is performed, wait until the

screen is redrawn before performing the next.

d. Repeat the above steps for each application.

186

Run previous between different applications.

a. Start an application on a file then Quit.

b. Start another application on a different file then perform a Run previous.

c. Perform run previous 64 times. Each time run previous is performed, wait until the

screen is redrawn before performing the next.

d. Repeat the above steps for as many application combinations as time allows for.

Also try to run different applications on the same file and switch between the two.

Modify the data with one application then switch back to the previous.

Programs of special concern are TELCOM, BASIC and WORD. Try opening the COM port in

BASIC and then connecting to the same port with TELCOM. Also printing to COM is possible

if you have a serial printer. Try opening COM in BASIC and then switching between BASIC

and an application that is printing to COM. Another area is running two invocations of FILE on

the same database.

Try Run previous in various low and memory conditions.

Quit (Control F10)

Quit from all applications from menu options and then return to the applications using both run

previous and RUN to reinvoke them. Pay special attention to Quitting with little or no available

system memory.

Quit from pop-ups^ This should return to the application that the pop-up was invoked from.

Also pay special attention to Quitting with little or no available system memory.

Disk I/O

Try printing to the disk with various applications.

Break in mid print

Quit in mid print

Run previous in mid print

Try Merging from a disk file with Word or Loading, Chaining, Running, Merging from a disk file

with BASIC.

Using a disk with physical flaws try to read from it and write to it.

187

If possible remove the disk from the drive during I/O and reinsert another disk that is different.

Different density

Has bad sectors

Has different number of sides

Do I/O on disks of various formats including:

Double & Single density

Double & Single sided

Different number of tracks per sector

Different physical flaws

Different physical drive location

Different file count

Device I/O

COM

This is a Read/Write device.

By configuring the port with Telcom it is possible to hook a device to any external COM port

thet the computer may have attached and use it as an output device for applications to print

to. Note that certain signals may have to be applied to the port for data to pass through it.

PRN

This is a Write only device,

Try printing to PRN with and without a printer connected.

CON

This is a Read/Write device.

a. Read comes from the keyboard.

b. Write goes to the screen.

Print to CON using various applications. Check that the screen is redrawn after printing.

Try Merging from CON with Word or Loading from CON with BASIC.

188

LCD

LCD is a write only device.

All output to LCD goes to the screen. Print to LCD using various applications. Check that the

screen is redrawn after printing.

Try Merging from LCD with Word or Loading from LCD with BASIC.

KYBD

KYBD is a read only device.

All data from KYBD comes from the keyboard. Try Merging from KYBD with Word or Loading

from KYBD with BASIC.

Try to Print to KYBD with various applications.

189

Appendix B

CHANGING MAIN MENU LABELS

Pressing Ctrl-Label will result in the following:

FILE
TELCOM
PLAN
BASIC
.BAS
FORMAT
INSTALL
.LIB

T600 WORK

SAMPLE

DBCALLS

Microso-f^R) Works VI. 12, Copyright <1984, 1985 > Microso-ft Corp.
Label CALC ALARM Run Quit

rrev123456789 10

Removing Environ.sys file, then pressing Ctrl-Label will result in

the following:

FILE
TELCOM
PLAN
BASIC
.BAS
FORMAT
INSTALL
.LIB

T606 WORK

SAMPLE

DBCALLS

Removing ENVIRON. SVS - Done
Label •) 112 3 4 6 8

Run
Prev
9

Quit

10

Pressing Warm-Start-Break will return the Environ.sys file, and

pressing Ctrl-Label will give you same results as shown above.

191

To use other slots in Ctrl-Label key (create pop-ups), use the

application file and the file called Environ.sys. This is what will

appear.

ID NAME TEXT NEW
FORM AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA
S0R1
FIND .

1
7 **FK3

CALC
ALARM

NEW

> Copy Delete aREH Find Insert Jump LookUp Move Options Print
Copyright <19847l985> Microsoft Corp.
File: ENVIRON Records : 2/2

Edit the file to include any of the applications, such as:

ID NAME TEXT NEW
FORM AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA
SORT
FIND
1 $$FK2 CALC
2 $*FK3 ALARM
3 $*FK4 WORD
4 **FK5 PLAN
5 $$FK6 IMHSIMI
NEW

> Copy Delete ggHI Find Insert Jump LookUp Move Options Print
Select option or type
File: ENVIRON

command letter
Records : 5/5

Press Enter to return to the Main Menu.

Now do a Warm-Start-Break to tell the system to use the new

Environ.sys file.

WORD
CALENDAR

TelcC
PLAN
BASIC
.BAS
FORMAT
INSTALL
.LIB

T660

ENVIRON

SAMPLE

DBCALLS

WORK

Microsof ;<R> Works VI. 12, Copyright C1984, 1985) Microsoft Corp.
> Copy Delete List Name 6ptiqns
Select option or type command 1

System Manager: FIL

Set
er
Bytes 4ree-- 174768 4/ 4/1985 10:20 = 44 AM

192

You can kill off the Environ.FIL file.

FILE
TELCOM
PLAN
BASIC
.BAS
FORMAT
INSTALL
.LIB

T600 WORK

SAMPLE

DBCALLS

moving ENVIRON.FIL - Dpne ^^
Copy Delete List Name Options 3m Set
lect option or type command letter

Removing ENVIRON.FIL - Done

Select option or typi
System Manager : WORD Bytes -free: 176320 4/ 4/1985 10:21:29 AM

Final results.

FILE
TELCOM
PLAN
BASIC
.BAS
FORMAT
INSTALL
.LIB

T680

SAMPLE

DBCALLS

WORK

Microso-f <R> Works VI. 12, Copyright < 1984, 1985) Microsoft Corp.

Label CALC ALARM WORD PLAN TELlOM gun

8
Prev
9

Quit

10

To change back to normal kill the Environ .sys file and do a Warm-

Start-Break.

193

Appendix C

PROGRAM TRANSFER AND CONVERSION

All programs (applications or device drivers) written in 8086 code for the Tandy 600 must

reside in the HH-DOS file system as "pure binary fines." In other words, these files must be

"core image", or in HH*DOS terms — they are "Application Memory Image" files.

Considering the existing "software tools" for the Tandy 600, this presents a major problem for

the software developer: How to get a program which was written on a MS-DOS machine to

the Tandy 600 and into HH-DOS's file system in the required format?

A simple printer filter for the Tandy 600 solved this problem in the following manner:

1) Write the code on a 2000 following the rules of HH-DOS's device drivers as explained in

"16-Bit Hand-held Operating System Programmers Reference Guide", February 25, 1985.

2) Assemble and link using MASM and MS-LINK.

3) Then convert the .EXE file to binary using MICRO-SOFT's utility, EXE2BIN.

4) Convert the binary files to INTEL.HEX file with 16 byte records.

5) Then tranfer the .HEX file from the 2000 to the Tandy 600 via RS232. The comm package

to use on 2000 is TELCOM (DESKMATE). The comm package on the Tandy 600 is also

TELCOM.

6) At this point the .HEX file exists in the HH-DOS's file system. Using BASIC on the Tandy

600, modify the .HEX to binary conversion program from OKI. Convert the .HEX file to

binary using this BASIC program (On the following page).

7) The INSTALL utility on the Tandy 600 is then used to make the binary file, i.e. printer filter,

resident.

195

A sample conversion program,

Intel.hex to binary.

The intel. hex file must have 16 byte records!

100 KEYOFF:CLS
200 PRINT:INPUT "Intel.hex file name: ",HNAME$
300 PRINT:INPUT "Binary file name: ", BNAME$
400 OPEN HNAMES FOR INPUT AS #1

500 OPEN BNAME$ FOR OUTPUT AS #2
600 '

700 H$ = "&H"

800 LINE INPUT #1,L$

900 PRINT L$;" > "

1000 LS = LEN (L$)-11

1100 IF LS = GOTO 5000
1200 L$ = MID$(L$,10,LS)

1300 PRINT" ";L$

1 400 FOR I
= 1 TO LS STEP 2

1500 B = VAL(H$ + MID$(L$,I,2))

1600 PRINT #2,CHR$(B);

1700 NEXT I

1800 IF LS<>0 GOTO 800

1900 '

5000 PRINT "End of Intel.hex file"

5100 CLOSE
5200 END

196

Appendix D

MS-WORKS UTILITIES FOR DEVELOPMENT

If you want a copy of the MS-Works Utilities Disk for applications development on the Tandy

600, please forward your request and a blank 5W Tandy 1000 disk or a PC-DOS disk (360K

type) to the following address:

Tandy Third Party Support

1300 One Tandy Center

Fort Worth, Texas 76102

The following files are available on the MS-Works Utilities Disk exclusively for applications

development on the Tandy 600. The use of these files is subject to the terms and conditions of

the end user license (located at the beginning of the Tandy 600 Owner's Manual).

Note: These files are unsupported by Microsoft, and Radio Shack, and the simulator will not

support a printer or modem.

Object Files:

HHSIM.EXE
CALC.IOO

BLDROM.EXE
WORD.I30

Data Files:

DEBUG. ROM
HHSIM.SYM
DEBUG.PRM
EXECNV.EXE
HHDEBUG.BAT

HHOS.SYM
DEBUG.GEN
MAKEDBG.BAT
DEBUGENV.SYS

The following is a listing of the SSSYSOOx.sys files.

Note: These files are part of the code licensed with Microsoft Works on the Tandy 600.

$$sys001.sys

S$sys002.sys

Operating system.

Pcode Interpreter (used only by the System Manager and

Microsoft applications).

$$sys003.sys

$$sys004.sys

Shared Pcode Library (used only by the System Manager and
Microsoft applications).

Math Pack (used only by the System Manager and Microsoft

applications).

$$sys005.sys

$$sys007.sys

System Manager.

Shared Strings (used only by the System Manager and Microsoft

applications).

$Ssys0010.sys : Template environment file.

197

